The synthesis, characterization, photophysics, lipophilicity, and cellular properties of new phosphorescent ruthenium(II) polypyridine complexes functionalized with a dibenzocyclooctyne (DIBO) or amine moiety [Ru(N^N)2 (L)](PF6 )2 are reported (L=4-(13-N-(3,4:7,8-dibenzocyclooctyne-5-oxycarbonyl) amino-4,7,10-trioxa-tridecanyl-aminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-DIBO, N^N=2,2'-bipyridine bpy (1 a), 1,10-phenanthroline phen (2 a); L=4-(13-amino-4,7,10-trioxa-tridecanylaminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-NH2 , N^N=bpy (1 b), phen (2 b)). The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of the DIBO complexes 1 a and 2 a with benzyl azide were studied. Also, the DIBO complexes 1 a and 2 a can selectively label N-azidoglycans located on the surface of CHO-K1 and A549 cells that were pretreated with 1,3,4,6-tetra-O-acetyl-N-azidoacetyl-D-mannosamine (Ac4 ManNAz). Additionally, the intracellular trafficking and localization of these biomolecules were monitored using laser-scanning confocal microscopy. Interestingly, the biolabeling and cellular uptake efficiency of the DIBO complexes 1 a and 2 a were cell-line dependent, as revealed by flow cytometry and ICP-MS. Furthermore, the complexes showed good biocompatibility toward the Ac4 ManNAz-pretreated cells in the dark, but exhibited photoinduced cytotoxicity due to the generation of singlet oxygen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201501040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!