Background: An abscopal response describes radiotherapy-induced immune-mediated tumour regression at sites distant to the irradiated field. Granulocyte-macrophage colony-stimulating factor is a potent stimulator of dendritic cell maturation. We postulated that the exploitation of the pro-immunogenic effects of radiotherapy with granulocyte-macrophage colony-stimulating factor might result in abscopal responses among patients with metastatic cancer.

Methods: Patients with stable or progressing metastatic solid tumours, on single-agent chemotherapy or hormonal therapy, with at least three distinct measurable sites of disease, were treated with concurrent radiotherapy (35 Gy in ten fractions, over 2 weeks) to one metastatic site and granulocyte-macrophage colony-stimulating factor (125 μg/m(2) subcutaneously injected daily for 2 weeks, starting during the second week of radiotherapy). This course was repeated, targeting a second metastatic site. A Simon's optimal two-stage design was chosen for this trial: an additional 19 patients could be enrolled in stage 2 only if at least one patient among the first ten had an abscopal response. If no abscopal responses were seen among the first ten patients, the study would be deemed futile and terminated. The primary endpoint was the proportion of patients with an abscopal response (defined as at least a 30% decrease in the longest diameter of the best responding abscopal lesion). Secondary endpoints were safety and survival. Analyses were done based on intention to treat. The trial has concluded accrual, and is registered with ClinicalTrials.gov, number NCT02474186.

Findings: From April 7, 2003, to April 3, 2012, 41 patients with metastatic cancer were enrolled. In stage 1 of the Simon's two-stage design, ten patients were enrolled: four of the first ten patients had abscopal responses. Thus, the trial proceeded to stage 2, as planned, and an additional 19 patients were enrolled. Due to protocol amendments 12 further patients were enrolled. Abscopal responses occurred in eight (27·6%, 95% CI 12·7-47·2) of the first 29 patients, and 11 (26·8%, 95% CI 14·2-42·9) of 41 accrued patients (specifically in four patients with non-small-cell lung cancer, five with breast cancer, and two with thymic cancer). The most common grade 3-4 adverse events were fatigue (six patients) and haematological (ten patients). Additionally, a serious adverse event of grade 4 pulmonary embolism occurred in one patient.

Interpretation: The combination of radiotherapy with granulocyte-macrophage colony-stimulating factor produced objective abscopal responses in some patients with metastatic solid tumours. This finding represents a promising approach to establish an in-situ anti-tumour vaccine. Further research is warranted in this area.

Funding: New York University School of Medicine's Department of Radiation Oncology and Cancer Institute.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1470-2045(15)00054-6DOI Listing

Publication Analysis

Top Keywords

abscopal responses
24
granulocyte-macrophage colony-stimulating
20
colony-stimulating factor
20
patients
17
patients metastatic
16
patients enrolled
16
ten patients
16
radiotherapy granulocyte-macrophage
12
responses patients
12
metastatic solid
12

Similar Publications

The Proimmunomodulatory and Anti-immunomodulatory Effects of Radiotherapy in Oncologic Care.

Hematol Oncol Clin North Am

January 2025

Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA. Electronic address:

The abscopal effect in radiotherapy (RT) refers to the phenomenon where localized radiation treatment causes regression of distant, nonirradiated tumors. Although rare, recent research shows that combining radiation with immunotherapies, such as immune checkpoint inhibitors, can enhance this effect. The interaction between radiation-induced cell death, immune responses, and the tumor microenvironment manifests in competing biologic mechanisms resulting in complex immunologic outcomes.

View Article and Find Full Text PDF

Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.

View Article and Find Full Text PDF

Purpose: This study aimed to compare systemic immune responses and metastatic effects induced by radiofrequency ablation (RFA) and irreversible electroporation (IRE) in murine tumor models. We assessed cytokine production, growth of treated and untreated metastatic tumors, and synergy with immune checkpoint inhibitors (ICIs).

Materials And Methods: Hep55.

View Article and Find Full Text PDF

The tumor-specific efficacy of the most current anticancer therapeutic agents, including antibody-drug conjugates (ADCs), oligonucleotides, and photosensitizers, is constrained by limitations such as poor cell penetration and low drug delivery. In this study, we addressed these challenges by developing, a positively charged, amphiphilic Chlorin e6 (Ce6)-conjugated, cell-penetrating anti-PD-L1 peptide nanomedicine (CPPD1) with enhanced cell and tissue permeability. The CPPD1 molecule, a bioconjugate of a hydrophobic photosensitizer and strongly positively charged programmed cell death-ligand 1 (PD-L1) binding cell-penetrating peptide (CPP), is capable of self-assembling into nanoparticles with an average size of 199 nm in aqueous solution without the need for any carriers.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!