Invasiveness is a hallmark of aggressive cancer like malignant melanoma, and factors involved in acquisition or maintenance of an invasive phenotype are attractive targets for therapy. We investigated melanoma phenotype modulation induced by the metastasis-promoting microenvironmental protein S100A4, focusing on the relationship between enhanced cellular motility, dedifferentiation and metabolic changes. In poorly motile, well-differentiated Melmet 5 cells, S100A4 stimulated migration, invasion and simultaneously down-regulated differentiation genes and modulated expression of metabolism genes. Metabolic studies confirmed suppressed mitochondrial respiration and activated glycolytic flux in the S100A4 stimulated cells, indicating a metabolic switch toward aerobic glycolysis, known as the Warburg effect. Reversal of the glycolytic switch by dichloracetate induced apoptosis and reduced cell growth, particularly in the S100A4 stimulated cells. This implies that cells with stimulated invasiveness get survival benefit from the glycolytic switch and, therefore, become more vulnerable to glycolysis inhibition. In conclusion, our data indicate that transition to the invasive phenotype in melanoma involves dedifferentiation and metabolic reprogramming from mitochondrial oxidation to glycolysis, which facilitates survival of the invasive cancer cells. Therapeutic strategies targeting the metabolic reprogramming may therefore be effective against the invasive phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2015.06.006DOI Listing

Publication Analysis

Top Keywords

invasive phenotype
16
metabolic reprogramming
12
s100a4 stimulated
12
malignant melanoma
8
dedifferentiation metabolic
8
stimulated cells
8
glycolytic switch
8
metabolic
6
invasive
5
phenotype
5

Similar Publications

Systems-level liquid biopsy in advanced prostate cancer.

Endocr Relat Cancer

January 2025

S Dehm, Masonic Cancer Center, University of Minnesota, Minneapolis, United States.

Treatment for castration-resistant prostate cancer (CRPC) primarily involves the suppression of androgen receptor (AR) activity using androgen receptor signaling inhibitors (ARSIs). While ARSIs have extended patient survival, resistance inevitably develops. Mechanisms of resistance include genomic aberrations at the AR locus that reactivate AR signaling, or lineage plasticity that drives emergence of AR-independent phenotypes.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Understanding the impact of spatial immunophenotypes on the survival of endometrial cancer patients through the ProMisE classification.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.

Objectives: We focused on how the immunophenotypes based on the distribution of CD8-positive tumor-infiltrating lymphocytes (TILs) relate to the endometrial cancer (EC) molecular subtypes and patients' prognosis.

Patients And Methods: Two cohorts of EC patients (total n = 145) were analyzed and categorized using the Molecular Risk Classifier for Endometrial cancer (ProMisE): POLEmut (POLE mutation), MMRd (mismatch repair deficiency), NSMP (no specific molecular profile), and p53abn (p53 abnormality). CD8-positive TILs, within the central tumor and the invasive margin, were examined by using immunohistochemical staining and advanced image-analysis software.

View Article and Find Full Text PDF

Introduction: The Spanish Society of Pulmonology and Thoracic Surgery created a registry for hospitalised patients with COVID-19 and the different types of respiratory support used (RECOVID). Objectives. To describe the profile of hospitalised patients with COVID-19, comorbidities, respiratory support treatments and setting.

View Article and Find Full Text PDF

[Tumor-associated macrophages promote pre-metastatic niche formation in ovarian cancer].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210000, China. *Corresponding author, E-mail:

Patients with ovarian cancer (OC) are often diagnosed at an advanced stage and have a poor prognosis because of extensive tumour metastasis. Tumour metastasis usually occurs in stages, which means that before the invasion of tumour cells, a pre-metastatic niche (PMN) has been formed to support the subsequent colonisation and growth of tumour cells. Tumour-associated macrophages (TAMs) are highly heterogeneous in terms of origin, phenotype and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!