A combination of coformer screening and modeling, followed by characterization using calorimetry, structure elucidation, and solubility led to the identification of novel crystalline forms of the hepatitis C protease inhibitor, telaprevir. The lead crystalline form, a cocrystalline solid of telaprevir with 4-aminosalycilic acid, was identified among the list of possible cocrystals via modeling and confirmed by initial screening. It displayed the most significant aqueous solubility improvement over the neat crystalline form. Enhancement of in vivo performance was further demonstrated: a 10-fold increase in bioavailability was achieved for the cocrystal in comparison to the neat nanocrystalline telaprevir and it was found to be not statistically different from the lead amorphous spray-dried formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.24534DOI Listing

Publication Analysis

Top Keywords

crystalline form
8
cocrystalline solids
4
telaprevir
4
solids telaprevir
4
telaprevir enhanced
4
enhanced oral
4
oral absorption
4
absorption combination
4
combination coformer
4
coformer screening
4

Similar Publications

A novel chiral ligand, named MAdPHOS, bearing a P-stereogenic phosphane and a diadamantyl phosphane linked by a NH bridge has been synthesized. This bulky, C-symmetric, PNP ligand has been prepared from enantiopure -butylmethyl aminophosphane and was obtained as a crystalline solid. The NH/PH tautomerism, air-stability, and σ-donor capacity of MAdPHOS have been assessed herein.

View Article and Find Full Text PDF

Partially Bonded Crystals: A Pathway to Porosity and Polymorphism.

ACS Nano

January 2025

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

In recent years, experimental and theoretical investigations have shown that anisotropic colloids can self-organize into ordered porous monolayers, where the interplay of localized bonding sites, so-called patches, with the particle's shape is responsible for driving the systems away from close-packing and toward porosity. Until now it has been assumed that patchy particles have to be fully bonded with their neighboring particles for crystals to form, and that, if full bonding cannot be achieved due to the choice of patch placement, disordered assemblies will form instead. In contrast, we show that by deliberately displacing the patches such that full bonding is disfavored, a different route to porous crystalline monolayers emerges, where geometric frustration and partial bonding are decisive process.

View Article and Find Full Text PDF

The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.

View Article and Find Full Text PDF

Lightweight flexible piezoelectric devices have garnered significant interest over the past few decades due to their applications as energy harvesters and wearable sensors. Among different piezoelectrically active polymers, poly(vinylidene fluoride) and its copolymers have attracted considerable attention for energy conversion due to their high flexibility, thermal stability, and biocompatibility. However, the orientation of polymer chains for self-poling under mild conditions is still a challenging task.

View Article and Find Full Text PDF

Preparation and Adsorption Properties of Sodium Trimetaphosphate Crosslinked Porous Corn Starch.

Biopolymers

March 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning, People's Republic of China.

The crosslinked porous corn starch was prepared by two steps: the native corn starch was hydrolyzed by α-amylase and glucoamylase, then the porous corn was crosslinked by sodium trimetaphosphate (STMP). The morphology and size of granules, spherulites, crystal type, molecular structure, swelling properties, thermal stability and adsorption properties of the crosslinked porous starch were investigated. The results indicated that a lot of holes formed in the porous starch, and the particle size of starch granules decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!