Aims: Loss-of-function mutations in GBA1, which cause the autosomal recessive lysosomal storage disease, Gaucher disease (GD), are also a key genetic risk factor for the α-synucleinopathies, including Parkinson's disease (PD) and dementia with Lewy bodies. GBA1 encodes for the lysosomal hydrolase glucocerebrosidase and reductions in this enzyme result in the accumulation of the glycolipid substrates glucosylceramide and glucosylsphingosine. Deficits in autophagy and lysosomal degradation pathways likely contribute to the pathological accumulation of α-synuclein in PD. In this report we used conduritol-β-epoxide (CBE), a potent selective irreversible competitive inhibitor of glucocerebrosidase, to model reduced glucocerebrosidase activity in vivo, and tested whether sustained glucocerebrosidase inhibition in mice could induce neuropathological abnormalities including α-synucleinopathy, and neurodegeneration.

Results: Our data demonstrate that daily systemic CBE treatment over 28 days caused accumulation of insoluble α-synuclein aggregates in the substantia nigra, and altered levels of proteins involved in the autophagy lysosomal system. These neuropathological changes were paralleled by widespread neuroinflammation, upregulation of complement C1q, abnormalities in synaptic, axonal transport and cytoskeletal proteins, and neurodegeneration.

Innovation: A reduction in brain GCase activity has been linked to sporadic PD and normal aging, and may contribute to the susceptibility of vulnerable neurons to degeneration. This report demonstrates that systemic reduction of GCase activity using chemical inhibition, leads to neuropathological changes in the brain reminiscent of α-synucleinopathy.

Conclusions: These data reveal a link between reduced glucocerebrosidase and the development of α-synucleinopathy and pathophysiological abnormalities in mice, and support the development of GCase therapeutics to reduce α-synucleinopathy in PD and related disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4544823PMC
http://dx.doi.org/10.1089/ars.2015.6307DOI Listing

Publication Analysis

Top Keywords

glucocerebrosidase inhibition
8
complement c1q
8
autophagy lysosomal
8
reduced glucocerebrosidase
8
neuropathological changes
8
gcase activity
8
glucocerebrosidase
6
sustained systemic
4
systemic glucocerebrosidase
4
inhibition induces
4

Similar Publications

Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study.

J Mol Med (Berl)

December 2024

Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.

Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls.

View Article and Find Full Text PDF

The Parkinson's disease risk gene cathepsin B promotes fibrillar alpha-synuclein clearance, lysosomal function and glucocerebrosidase activity in dopaminergic neurons.

Mol Neurodegener

November 2024

Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute-Hospital, McGill University, Montreal, Québec, Canada.

Article Synopsis
  • - Variants in the CTSB gene are linked to an increased risk of Parkinson's disease (PD) and affect the activity of cathepsin B, an enzyme involved in breaking down proteins and regulating cellular processes related to autophagy and lysosome function.
  • - CatB can both degrade the harmful alpha-synuclein protein associated with PD and potentially create shorter versions of it that are more prone to aggregation, complicating its role in PD pathology.
  • - Experiments showed that inhibiting catB disrupts autophagy and lysosomal function, leading to an accumulation of toxic protein aggregates, while activating catB enhances the clearance of these aggregates in cell and neuron models.
View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on identifying potential therapeutic targets for gastric cancer by examining ferroptosis-related genes, given the disease's low survival rates and the need for new treatments.
  • The study used Mendelian randomization to analyze the relationship between Helicobacter pylori infection, GBA1 gene expression, and the methylation of its promoter, employing various laboratory techniques including sequencing and assays to monitor these factors in gastric cancer cell models.
  • Findings revealed that higher GBA1 expression and lower promoter methylation are risk factors for gastric cancer, and that Helicobacter pylori infection enhances GBA1 expression, promotes cell proliferation, and reduces lipid peroxidation, with these effects being reversible through GBA1 knockdown.
View Article and Find Full Text PDF
Article Synopsis
  • GBA2 is an enzyme that plays a critical role in breaking down glucosylceramide and has been linked to diseases like Sandhoff and Niemann-Pick type C, as well as parkinsonism.
  • Researchers have developed a specific activity-based probe (ABP) to study GBA2, which shows promise as a tool for visualizing and understanding this enzyme's function and location within cells.
  • The probe, β-d-arabinofuranosyl cyclitol aziridine, selectively binds to GBA2, allowing researchers to distinguish its subcellular localization from that of another enzyme, GBA1, and suggests a pathway for developing new GBA2 inhibitors for future clinical use.
View Article and Find Full Text PDF

Upregulation of NFE2L1 reduces ROS levels and α-synuclein aggregation caused by GBA1 knockdown.

Biochem Biophys Res Commun

November 2024

Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Children's Hospital, Fudan University, Shanghai, 201102, China. Electronic address:

Biallelic mutations in the GBA1 gene result in Gaucher disease (GD), and both patients with GD and carriers of a single GBA1 mutation have an increased susceptibility to Parkinson's disease (PD), but the underlying mechanisms of this association are not yet clear. In previous studies, we established Gba1 F213I point mutation mice and found that homozygous Gba1 F213I mutant mice died shortly after birth, while heterozygous mice could survive normally. In this study, we investigated the transcriptomic changes in the brain tissue of Gba1 F213I heterozygous mice, identifying 138 differentially expressed genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!