Pretreatment of lignocellulosic biomass is necessary to enhance the hydrolysis, which is the rate-limiting step in biogas production. Laccase and versatile peroxidase are enzymes known to degrade lignin. Therefore, the impact of enzymatic pretreatment was studied on a variety of biomass. A significant higher release in total phenolic compounds (TPC) was observed, never reaching the inhibiting values for anaerobic digestion. The initial concentration of TPC was higher in the substrates containing more lignin, miscanthus and willow. The anaerobic digestion of these two substrates resulted in a significant lower biomethane production (68.8-141.7 Nl/kg VS). Other substrates, corn stover, flax, wheat straw and hemp reached higher biomethane potential values (BMP), between 241 and 288 Nl/kg VS. Ensilaged maize reached 449 Nl/kg VS, due to the ensilation process, which can be seen as a biological and acid pretreatment. A significant relation (R(2) = 0.89) was found between lignin content and BMP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2015.06.051 | DOI Listing |
Environ Technol
February 2025
Technology Institute, University of Passo Fundo, Passo Fundo, RS, Brazil.
Food waste offers a potential source for bioethanol production, but productivity depends on the chemical composition of the raw materials and the processes involved. However, assessment of the environmental sustainability of these processes is often absent and can be carried out using the Life Cycle Assessment (LCA) methodology. This study aimed to perform an LCA on bioethanol production from mixtures of different wastes, including tubers, fruits, and processed foods, focusing on the gate-to-gate phase.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC) - CONICET-UNC, Av. Juan Filloy S/N, Ciudad Universitaria, Córdoba, Argentina.
The focus of this work was to evaluate the differences between the thermal and mechanical effects generated by ultrasound waves on the properties of corn starch, which facilitate the subsequent enzymatic hydrolysis for the generation of porous starches. The results showed that both the thermal and mechanical effects have the capacity to disorganize/alter the structure of starch, impacting on its properties. Characteristics such as particle size, pasting and thermal properties (peak viscosity 1400-1800 cp.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:
Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Department of Plant Biology, University of Szeged, Közép fasor 52., H6726 Szeged, Hungary.
The beneficial effects of priming technology are aimed at the promotion of growth and development and stress tolerance in plants. Different seed pre-treatment and vegetative priming approaches (osmo-, chemical, physical, hormonal, redox treatments) increase the level of nitric oxide (NO) being an active contributor to growth regulation and defence responses. On the other hand, seed pre-treatment or vegetative priming mainly with the NO donor, sodium nitroprusside (SNP) helps to mitigate different abiotic stresses like salinity, cold, drought, excess metals.
View Article and Find Full Text PDFMolecules
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.
Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!