Both tumor suppressor and tumor promoter roles, which are dependent on the tumor type, have been described for caveolin-1 (CAV-1). Because CAV-1 can modulate cell signaling, we tested the hypothesis that it regulates lung adenocarcinoma cell proliferation and metastasis via modulation of epidermal growth factor receptor (EGFR) activity. The lung adenocarcinoma cell line, GLC-82, was transfected with pcDNA3.1CAV-1 plasmid, before cell proliferation, migration, and invasion were analyzed. In the in vivo xenograft model, the relationship between the CAV-1 expression and EGFR phosphorylation and signaling was assessed by western blot analysis. The relationship between the CAV-1 as well as Ki67 expression and the clinicopathological characteristics of 68 lung adenocarcinoma patients was also examined using immunohistochemistry. Overexpression of CAV-1 significantly increased GLC-82 proliferation (p < 0.001), migration (p < 0.001), and invasion (p = 0.002) as well as EGFR and ERK phosphorylation (p < 0.05). The GLC-82/CAV-1 cell tumors were also significantly larger than those of control cells (all p ≤ 0.05). In lung adenocarcinoma patients, CAV-1 expression was positively correlated with lymph node metastasis and cancer stage. Finally, CAV-1 expression was associated with the expression of Ki-67, a marker of cell proliferation. CAV-1 enhanced GLC-82 cell proliferation, migration, and invasion possibly through EGFR and ERK signaling. Furthermore, the relationship of CAV-1 with Ki67 expression, a marker of proliferative capacity, in lung adenocarcinoma samples is suggestive of its role in disease progression. Further studies are required to confirm the role of CAV-1 in the metastasis of lung adenocarcinoma as well as its potential prognostic and therapeutic value.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12032-015-0644-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!