Molecular dynamics simulations are carried out to study the translational and rotational diffusion of a single Janus particle immersed in a dense Lennard-Jones fluid. We consider a spherical particle with two hemispheres of different wettabilities. The analysis of the particle dynamics is based on the time-dependent orientation tensor, particle displacement, as well as the translational and angular velocity autocorrelation functions. It was found that both translational and rotational diffusion coefficients increase with decreasing surface energy at the nonwetting hemisphere, provided that the wettability of the other hemisphere remains unchanged. We also observed that in contrast to homogeneous particles, the nonwetting hemisphere of the Janus particle tends to rotate in the direction of the displacement vector during the rotational relaxation time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4922689 | DOI Listing |
J Biomol Struct Dyn
December 2024
Department of Bioinformatics, School of Life Sciences Pondicherry University, Puducherry, India.
Flavin adenine nucleotide (FAD)-dependent oxidoreductase enzyme Alcohol oxidase (AOX) facilitates the growth of methylotrophic yeast C. boidinii by catabolizing methanol, producing formaldehyde and hydrogen peroxide. Vacuolar Protease-A (PrA) from C.
View Article and Find Full Text PDFReprod Toxicol
December 2024
Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana, India, 121102. Electronic address:
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets.
View Article and Find Full Text PDFDev Biol
December 2024
Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. Electronic address:
The cell nuclei of Ophisthokonts, the eukaryotic supergroup defined by fungi and metazoans, is remarkable in the constancy of their double-membraned structure in both somatic and germ cells. Such remarkable structural conservation underscores common and ancient evolutionary origins. Yet, the dynamics of disassembly and reassembly displayed by Ophisthokont nuclei vary extensively.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Department of Medicine, Federal University of Rondonia (UNIR), Porto Velho, RO, Brazil. Electronic address:
Phospholipases A (PLAs) are highly prevalent in Bothrops snake venom and play a crucial role in inflammatory responses and immune cell activation during envenomation. Despite their significance, the specific role of PLAs from Bothrops mattogrossensis venom (BmV) in inflammation is not fully understood. This study sought to isolate and characterize a novel acidic PLA from BmV, designated BmPLA-A, and to evaluate its effects on human umbilical vein endothelial cells (HUVECs), with a specific focus on cytotoxicity, adhesion, and detachment.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin 300457, PR China. Electronic address:
The robustness and catalytic activity of superoxide dismutase (SOD) are still the main factors limiting their application in industrial fields. This study aims to further improve the properties of a natural thermophilic iron/manganese dual-domain SOD (Fe/Mn-SODA fused with N-terminal polypeptide) from Geobacillus thermodenitrificans NG80-2 (GtSOD) by modifying its each domain using in-depth in silico prediction analysis as well as protein engineering. First, computational analysis of the N-terminal domain and GtSODA domain was respectively performed by using homologous sequence alignment and virtual mutagenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!