A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN(-), C4H(-), and C2H(-). Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiative decay. We have shown that the contribution of the indirect pathway to the formation of CN(-) is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10(-16) cm(3)/s for CN(-), 7 × 10(-17) cm(3)/s for C2H(-), and 2 × 10(-16) cm(3)/s for C4H(-). These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4922691DOI Listing

Publication Analysis

Top Keywords

radiative electron
12
electron attachment
12
rate coefficients
8
indirect pathway
8
direct mechanism
8
10-16 cm3/s
8
theoretical study
4
radiative
4
study radiative
4
electron
4

Similar Publications

Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging.

Adv Sci (Weinh)

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.

The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging.

View Article and Find Full Text PDF

Multilayered metal-dielectric nanostructures display both a strong plasmonic behavior and hyperbolic optical dispersion. The latter is responsible for the appearance of two separated radiative and nonradiative channels in the extinction spectrum of these structures. This unique property can open plenty of opportunities toward the development of multifunctional systems that simultaneously can behave as optimal scatterers and absorbers at different wavelengths, an important feature to achieve multiscale control of light-matter interactions in different spectral regions for different types of applications, such as optical computing or detection of thermal radiation.

View Article and Find Full Text PDF

Buried interface management toward high-performance perovskite solar cells.

Chem Sci

December 2024

Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China

The interface between the perovskite layer and the electron transport layer is an extremely important factor that cannot be ignored in achieving high-performance perovskite photovoltaic technology. However, the void defects of the interface pose a serious challenge for high performance perovskite solar cells (PSCs). To address this, we report a polydentate ligand reinforced chelating strategy to strengthen the stability of the buried interface by managing interfacial defects and stress.

View Article and Find Full Text PDF

The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.

View Article and Find Full Text PDF

Why do similar 1D-polyhedron-chain copper chloride semiconductors have 2-order-distinct luminescence quantum efficiencies?

J Chem Phys

December 2024

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China.

The "green" copper halides with one-dimensional polyhedron chains are very interesting novel semiconductors. These weakly interacting parallel quantum wires (1D polyhedron chains) play key roles in their photophysical properties. Unlike Cs3Cu2I5, which has been much investigated, its homologous compounds Cs3Cu2Cl5 and CsCu2Cl3 remain less studied and their properties are controversial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!