A Mach-Zehnder interferometer is used to measure spherically diverging N-waves in homogeneous air. An electrical spark source is used to generate high-amplitude (1800 Pa at 15 cm from the source) and short duration (50 μs) N-waves. Pressure waveforms are reconstructed from optical phase signals using an Abel-type inversion. It is shown that the interferometric method allows one to reach 0.4 μs of time resolution, which is 6 times better than the time resolution of a 1/8-in. condenser microphone (2.5 μs). Numerical modeling is used to validate the waveform reconstruction method. The waveform reconstruction method provides an error of less than 2% with respect to amplitude in the given experimental conditions. Optical measurement is used as a reference to calibrate a 1/8-in. condenser microphone. The frequency response function of the microphone is obtained by comparing the spectra of the waveforms resulting from optical and acoustical measurements. The optically measured pressure waveforms filtered with the microphone frequency response are in good agreement with the microphone output voltage. Therefore, an optical measurement method based on the Mach-Zehnder interferometer is a reliable tool to accurately characterize evolution of weak shock waves in air and to calibrate broadband acoustical microphones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4921549 | DOI Listing |
Sci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFThe cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.
View Article and Find Full Text PDFHere we experimentally demonstrate the dynamics of Bloch-Zener oscillations (BZOs) in a synthetic temporal lattice formed by the optical pulses in coupled fiber loops. By periodically modulating the phases imposed to the optical pulses in linear driven lattices, a two-band Floquet system with tunable bandgaps is realized, and the related BZOs that occurred in this system are displayed. On this basis, by manipulating the phase difference and coupling angle of the synthetic lattice, the widths of 0-gap and -gap are tuned feasibly so that a wide variety of the interplays between Bloch oscillations and Landau-Zener tunneling (LZT) are exhibited.
View Article and Find Full Text PDFNanophotonics
September 2024
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China.
Integrated miniature spectrometers have impacts in industry, agriculture, and aerospace applications due to their unique advantages in portability and energy consumption. Although existing on-chip spectrometers have achieved breakthroughs in key performance metrics, such as, a high resolution and a large bandwidth, their scanning speed and energy consumption still hinder practical applications of such devices. Here, a stationary Fourier transform spectrometer is introduced based on a Mach-Zehnder interferometer structure on thin-film lithium niobate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!