Objectives: This study aimed to characterize the genomic context of the bla SPM-1 gene in Brazilian strains belonging to the pandemic Pseudomonas aeruginosa clone SP/ST277.
Methods: WGS of clone SP/ST277 strains was performed using a Nextera paired-end library in an Illumina HiSeq 2500 sequencer. bla SPM-1 context was assessed by de novo assembly and gene prediction and annotation tools. bla SPM-1 was screened in P. aeruginosa genomes through BlastN, and comparative genomics were performed.
Results: The metallo-β-lactamase bla SPM-1 has been disseminated by the pandemic Brazilian P. aeruginosa clone SP/ST277. In spite of its association with the CR4 element and with the Tn4371 element, the overall bla SPM-1 genomic context remains uncharacterized and its determination is valuable to understanding gene dispersion dynamics and the consequent emergence of carbapenem resistance. In this study, bla SPM-1 and its surrounding sequences (CR4-groEL-bla SPM-1-CR4-groEL) were found in the variable region of an ICE-like element resembling Tn4371 (where ICE stands for integrative and conjugative element). This element, named ICETn4371 6061, had 46 ORFs, including the bicyclomycin resistance bcr1 gene. An integrase gene and a set of conjugative transfer genes were identified. Gene content and order were shared with other Tn4371-ICEs, presenting remarkable amino acid identities. bla SPM-1 and surrounding sequences were missing in ICETn4371 6061 of PS600-MA, another isolate belonging to clone SP/ST277, indicating their mobilization. Eight/nine P. aeruginosa genomes assigned to clone SP/ST277, by in silico MLST, harboured bla SPM-1 inserted into ICETn4371 6061.
Conclusions: The presence of bla SPM-1 in a Tn4371-ICE with intact integration/conjugation modules demonstrated that, besides gene dispersion by clonal expansion of the pandemic SP/ST277 lineage, bla SPM-1 may be spread through ICE conjugation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkv152 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!