Towards axonal regeneration and neuroprotection in glaucoma: Rho kinase inhibitors as promising therapeutics.

Prog Neurobiol

Neural Circuit Development and Regeneration Research Group, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium.

Published: August 2015

Due to a prolonged life expectancy worldwide, the incidence of age-related neurodegenerative disorders such as glaucoma is increasing. Glaucoma is the second cause of blindness, resulting from a slow and progressive loss of retinal ganglion cells (RGCs) and their axons. Up to now, intraocular pressure (IOP) reduction is the only treatment modality by which ophthalmologists attempt to control disease progression. However, not all patients benefit from this therapy, and the pathophysiology of glaucoma is not always associated with an elevated IOP. These limitations, together with the multifactorial etiology of glaucoma, urge the pressing medical need for novel and alternative treatment strategies. Such new therapies should focus on preventing or retarding RGC death, but also on repair of injured axons, to ultimately preserve or improve structural and functional connectivity. In this respect, Rho-associated coiled-coil forming protein kinase (ROCK) inhibitors hold a promising potential to become very prominent drugs for future glaucoma treatment. Their field of action in the eye does not seem to be restricted to IOP reduction by targeting the trabecular meshwork or improving filtration surgery outcome. Indeed, over the past years, important progress has been made in elucidating their ability to improve ocular blood flow, to prevent RGC death/increase RGC survival and to retard axonal degeneration or induce proper axonal regeneration. Within this review, we aim to highlight the currently known capacity of ROCK inhibition to promote neuroprotection and regeneration in several in vitro, ex vivo and in vivo experimental glaucoma models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pneurobio.2015.06.002DOI Listing

Publication Analysis

Top Keywords

axonal regeneration
8
iop reduction
8
glaucoma
7
regeneration neuroprotection
4
neuroprotection glaucoma
4
glaucoma rho
4
rho kinase
4
kinase inhibitors
4
inhibitors promising
4
promising therapeutics
4

Similar Publications

Exposure to ionizing radiation during manned deep space missions to Mars could lead to functional impairments of the central nervous system, which may compromise the success of the mission and affect the quality of life for returning astronauts. Along with radiation-induced changes in cognitive abilities and emotional status, the effects of increased motor activity were observed. The mechanisms behind these phenomena still remain unresolved.

View Article and Find Full Text PDF

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have emerged as a promising therapeutic strategy for spinal cord injury (SCI). These nanosized vesicles possess unique properties such as low immunogenicity and the ability to cross biological barriers, making them ideal carriers for delivering bioactive molecules to injured tissues. MSC-EVs have been demonstrated to exert multiple beneficial effects in SCI, including reducing inflammation, promoting neuroprotection, and enhancing axonal regeneration.

View Article and Find Full Text PDF

The conserved MAP3K DLKs are widely known for their functions in synapse formation, axonal regeneration and degeneration, and neuronal survival, notably under traumatic injury and chronic disease conditions. In contrast, their roles in other neuronal compartments are much less explored. Through an unbiased forward genetic screening in C.

View Article and Find Full Text PDF

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Human neural stem cells (hNSCs) possess significant therapeutic potential for the treatment of traumatic brain injury (TBI), a leading cause of global death and disability. Recent pre-clinical studies have shown that hNSCs reduce tissue damage and promote functional recovery through neuroprotective and regenerative signaling and cell replacement. Yet the overall efficacy of hNSCs for TBI indications remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!