Despite its biological importance, iron is a pro-oxidant element and its accumulation results in tissue injury. Iron overload diseases such as thalassemia and hereditary hemochromatosis are commonly associated with liver tissue injury. Glutamyl cysteine (GC) is a dipeptide with antioxidant properties owing to its cysteine residue. The aim of the current work was to investigate the hepatoprotective effect of GC against iron overload-induced liver injury. Rats were distributed into five groups; normal control, GC control, iron-treated (150 mg/kg ip injection) and both iron and GC-treated (total iron: 150 mg/kg ip and GC: 50 mg or 100 mg/kg/day ip for 30 days). Our results showed that treatment with GC at the two-dose levels attenuated iron-induced liver tissue injury as evidenced by significant reduction in serum activity of liver enzymes ALT and AST, amelioration of iron-induced histopathological alteration, suppression of iron-induced oxidative stress as demonstrated by significant reduction of malondialdehyde and protein carbonyl content beside elevation of total antioxidant capacity, reduced glutathione and the antioxidant enzymes GPx and SOD in liver tissue. In addition, GC significantly reduced levels of the proinflammatory cytokines TNF-α, IL-6 and IL-1β and activity of the apoptotic marker caspase-3 in liver tissues. To our surprise, GC reduced liver iron content and ferritin expression, denoting the possible iron chelation competency. Collectively our results highlight evidence for the hepatoprotective effect of GC against iron overload-induced liver injury that is potentially mediated through suppression of oxidative tissue injury, attenuation of inflammatory response, amelioration of hepatocellular apoptosis and possibly through iron chelation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2015.06.006 | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria 3065, Australia.
Dynamin-related protein 1 (Drp1) is a mitochondrial fission protein and a viable target for cardioprotection against myocardial ischaemia-reperfusion injury. Here, we reported a novel Drp1 inhibitor (DRP1i1), delivered using a cardiac-targeted nanoparticle drug delivery system, as a more effective approach for achieving acute cardioprotection. DRP1i1 was encapsulated in cubosome nanoparticles with conjugated cardiac-homing peptides (NanoDRP1i1) and the encapsulation efficiency was 99.
View Article and Find Full Text PDFPersistent neutrophilic inflammation can lead to tissue damage and chronic inflammation, contributing to non-healing wounds. The resolution phase of neutrophilic inflammation is critical to preventing tissue damage, as observed in diseases characterized by influx of neutrophils such as atherosclerosis and non-healing wounds. Animal models have provided insight into resolution of neutrophilic inflammation via efferocytosis and reverse migration (rM); however, species-specific differences and complexity of innate immune responses make translation to humans challenging.
View Article and Find Full Text PDFInjured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.
View Article and Find Full Text PDFKorean J Neurotrauma
December 2024
Department of Neurosurgery, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea.
Spinal cord injury (SCI) remains a significant clinical challenge, with no fully effective treatment available despite advancements in various therapeutic approaches. This review examines the emerging role of induced neural stem cells (iNSCs) as promising candidates for SCI treatment, highlighting their potential for direct neural regeneration and integration with host tissue. We explore the biology of iNSCs, their mechanisms of action, and their interactions with host tissue, including modulating inflammatory responses, promoting axonal growth, and reconstructing neural circuits.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Physiology, Faculty of Medicine Gonabad University of Medical Sciences Gonabad Iran.
Due to the anti-inflammatory and antioxidant properties of the and the pathological mechanisms of rhabdomyolysis in the kidney, this plant can be used to improve the symptoms of this disease. Then, in this study, we investigated the effects of this herb in improving kidney injury by rhabdomyolysis. Animals were divided into five groups: control, glycerol (received it for rhabdomyolysis induction), extract (received 12 mg/kg extract), and treatment groups with dexamethasone (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!