A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drosophila sodium channel mutations: Contributions to seizure-susceptibility. | LitMetric

Drosophila sodium channel mutations: Contributions to seizure-susceptibility.

Exp Neurol

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA. Electronic address:

Published: December 2015

This paper reviews Drosophila voltage-gated Na(+) channel mutations encoded by the para (paralytic) gene and their contributions to seizure disorders in the fly. Numerous mutations cause seizure-sensitivity, for example, para(bss1), with phenotypes that resemble human intractable epilepsy in some aspects. Seizure phenotypes are also seen with human GEFS+ spectrum mutations that have been knocked into the Drosophila para gene, para(GEFS+) and para(DS) alleles. Other para mutations, para(ST76) and para(JS) act as seizure-suppressor mutations reverting seizure phenotypes in other mutants. Seizure-like phenotypes are observed from mutations and other conditions that cause a persistent Na(+) current through either changes in mRNA splicing or protein structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4644469PMC
http://dx.doi.org/10.1016/j.expneurol.2015.06.018DOI Listing

Publication Analysis

Top Keywords

channel mutations
8
seizure phenotypes
8
mutations
7
drosophila sodium
4
sodium channel
4
mutations contributions
4
contributions seizure-susceptibility
4
seizure-susceptibility paper
4
paper reviews
4
reviews drosophila
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!