Metalloproteinase expression is altered in cardiac and skeletal muscle in cancer cachexia.

Am J Physiol Heart Circ Physiol

Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio

Published: August 2015

Cardiac and skeletal muscle dysfunction is a recognized effect of cancer-induced cachexia, with alterations in heart function leading to heart failure and negatively impacting patient morbidity. Cachexia is a complex and multifaceted disease state with several potential contributors to cardiac and skeletal muscle dysfunction. Matrix metalloproteinases (MMPs) are a family of enzymes capable of degrading components of the extracellular matrix (ECM). Changes to the ECM cause disruption both in the connections between cells at the basement membrane and in cell-to-cell interactions. In the present study, we used a murine model of C26 adenocarcinoma-induced cancer cachexia to determine changes in MMP gene and protein expression in cardiac and skeletal muscle. We analyzed MMP-2, MMP-3, MMP-9, and MMP-14 as they have been shown to contribute to both cardiac and skeletal muscle ECM changes and, thereby, to pathology in models of heart failure and muscular dystrophy. In our model, cardiac and skeletal muscles showed a significant increase in RNA and protein levels of several MMPs and tissue inhibitors of metalloproteinases. Cardiac muscle showed significant protein increases in MMP-2, MMP-3, MMP-9, and MMP-14, whereas skeletal muscles showed increases in MMP-2, MMP-3, and MMP-14. Furthermore, collagen deposition was increased after C26 adenocarcinoma-induced cancer cachexia as indicated by an increased left ventricular picrosirius red-positive-stained area. Increases in serum hydroxyproline suggest increased collagen turnover, implicating skeletal muscle remodeling. Our findings demonstrate that cancer cachexia-associated matrix remodeling results in cardiac fibrosis and possible skeletal muscle remodeling. With these findings, MMPs represent a possible therapeutic target for the treatment of cancer-induced cachexia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4537942PMC
http://dx.doi.org/10.1152/ajpheart.00106.2015DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
28
cardiac skeletal
24
cancer cachexia
12
mmp-2 mmp-3
12
skeletal
9
cardiac
8
muscle
8
muscle dysfunction
8
cancer-induced cachexia
8
heart failure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!