Gene expression analysis is a key technology that is used to understand living systems. Multicellular organisms, including plants, are composed of various tissues and cell types, each of which exhibits a unique gene expression pattern. However, because of their rigid cell walls, plant cells are difficult to isolate from the whole plant. Although laser dissection has been used to circumvent this problem, the plant sample needs to be fixed beforehand, which presents several problems. In the present study, we developed an alternative method to conduct highly reliable gene expression profiling. First, we assembled a dissection apparatus that used a narrow, sharpened needle to dissect out a microsample of fresh plant tissue (0.1-0.2 mm on each side) automatically from a target site within a short time frame. Then, we optimized a protocol to synthesize a high-quality cDNA library on magnetic beads using a single microsample. The cDNA library was amplified and subjected to high-throughput sequencing. In this way, a stable and reliable system was developed to conduct gene expression profiling in small regions of a plant. The system was used to analyze the gene expression patterns at successive 50 µm intervals in the shoot apex of a 4-day-old Arabidopsis seedling. Clustering analysis of the data demonstrated that two small, adjacent domains, the shoot apical meristem and the leaf primordia, were clearly distinguishable. This system should be broadly applicable in the investigation of the spatial organization of gene expression in various contexts.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcv078DOI Listing

Publication Analysis

Top Keywords

gene expression
28
cdna library
12
expression analysis
8
expression profiling
8
expression
7
gene
6
plant
5
position-specific gene
4
analysis microgram
4
microgram dissection
4

Similar Publications

Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis.

Development

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.

Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis.

View Article and Find Full Text PDF

Mining Silent Biosynthetic Gene Clusters for Natural Products in Filamentous Fungi.

Chem Biodivers

January 2025

Zhejiang University, Polytechnic Institute, 866 Yuhangtang Road, Hangzhou, CHINA.

Filamentous fungi are of great interest due to their powerful metabolic capabilities and potentials to produce abundant various secondary metabolites as natural products (NPs), some of which have been developed into pharmaceuticals. Furthermore, high-throughput genome sequencing has revealed tremendous cryptic NPs underexplored. Based on the development of in silico genome mining, various techniques have been introduced to rationally modify filamentous fungi,awakening the silent biosynthetic gene clusters (BGCs) and visualizing the NPs originally cryptic.

View Article and Find Full Text PDF

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.

View Article and Find Full Text PDF

Plant growth-promoting rhizobacterium Sp7 utilizes fructose efficiently via a fructose phosphotransferase system (Fru-PTS). Its genome encodes two putative Fru-PTS, each consisting of FruB (EIIA), FruK (Pfk), and FruA (EIIBC) proteins. We compared the proteomes of Sp7 grown with malate or fructose as sole carbon source, and noticed upregulation of the constituent proteins of Fru-PTS1 only on fructose.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!