Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13.

FASEB J

*Division of Rheumatology, Department of Medicine, Department of Cell Biology, and Department of Orthopaedic Surgery, New York University (NYU) School of Medicine and NYU Langone Medical Center, New York, New York, USA; Frontier Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan; Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, Florida, USA; and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.

Published: October 2015

We investigated the role of periostin, an extracellular matrix protein, in the pathophysiology of osteoarthritis (OA). In OA, dysregulated gene expression and phenotypic changes in articular chondrocytes culminate in progressive loss of cartilage from the joint surface. The molecular mechanisms underlying this process are poorly understood. We examined periostin expression by immunohistochemical analysis of lesional and nonlesional cartilage from human and rodent OA knee cartilage. In addition, we used small interfering (si)RNA and adenovirus transduction of chondrocytes to knock down and up-regulate periostin levels, respectively, and analyzed its effect on matrix metalloproteinase (MMP)-13, a disintegrin and MMP with thrombospondin motifs (ADAMTS)-4, and type II collagen expression. We found high periostin levels in human and rodent OA cartilage. Periostin increased MMP-13 expression dose [1-10 µg/ml (EC50 0.5-1 μg/ml)] and time (24-72 h) dependently, significantly enhanced expression of ADAMTS4 mRNA, and promoted cartilage degeneration through collagen and proteoglycan degradation. Periostin induction of MMP-13 expression was inhibited by CCT031374 hydrobromide, an inhibitor of the canonical Wnt/β-catenin signaling pathway. In addition, siRNA-mediated knockdown of endogenous periostin blocked constitutive MMP-13 expression. These findings implicate periostin as a catabolic protein that promotes cartilage degeneration in OA by up-regulating MMP-13 through canonical Wnt signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566939PMC
http://dx.doi.org/10.1096/fj.15-272427DOI Listing

Publication Analysis

Top Keywords

mmp-13 expression
12
periostin
9
human rodent
8
periostin levels
8
cartilage degeneration
8
cartilage
7
expression
7
mmp-13
5
elevated expression
4
expression periostin
4

Similar Publications

Background: This study investigated the molecular mechanism by which the combination of platelet-rich plasma (PRP) and isometric contraction of the quadriceps (ICQ) intervention regulates autophagy in chondrocytes to prevent and treat knee osteoarthritis (KOA).

Methods: Thirty Sprague-Dawley rats were divided into a control group (CG, n = 6) and a model group (n = 24). After one week, the model group was randomly divided into a joint intervention group (JIG), a rapamycin group (RAG), an MHY1485 group (MYG), and a model blank group (MBG), with JIG, RAG, and MYG receiving the same combined intervention.

View Article and Find Full Text PDF

Background: Although osteoarthritis (OA) is the most prevalent form of arthritis, there is still no effective treatment capable of combining immunomodulatory effects with cartilage repair. Extracellular vesicles (EVs) represent a promising new generation of cell-free therapies for OA. Blood-derived products, including plasma, are an easily available and abundant source of EVs with anti-inflammatory and regenerative properties.

View Article and Find Full Text PDF

Background: The long non-coding RNA CRNDE (CRNDE) has been identified as a lncRNA associated with osteoarthritis (OA), playing a role the age-related degeneration of articular cartilage. However, the precise mechanism by which CRNDE affects the physiological functions of OA chondrocytes remains unclear.

Methods: To simulate the inflammatory conditions observed in OA, interleukin (IL)-1β-stimulated chondrocyte C-28/I2 cells were utilized.

View Article and Find Full Text PDF

Systematic insight into the dual COX-2/5-LOX inhibitory mechanism of Duhuo Jisheng decoction for treatment of osteoarthritis based on in silico and bioassay.

J Ethnopharmacol

December 2024

College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China; Gansu University Key Laboratory for Molecular Medicine and Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, China. Electronic address:

Ethnopharmacological Relevance: Traditional Chinese medicine (TCM) is frequently used to treat osteoarthritis (OA). Duhuo Jisheng decoction (DHJSD), a Chinese patent medicine, was commonly used Chinese herbal formula for the treatment of OA. In Western medicine, dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme has been proved to be a promising strategy to treat inflammatory diseases with reduced side effects.

View Article and Find Full Text PDF

Rheumatoid arthritis is an autoimmune illness causing deformity, edema, and joint tenderness. Its long-term treatment burdens the healthcare system and leads to toxicity, and thus, finding safe, effective, and affordable therapies is essential. The current study aimed to exhibit the anti-arthritic activity of Carvone-loaded chitosan nanoparticles to treat Freund's complete adjuvant (FCA) arthritis in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!