Despite the importance of mucociliary epithelia in animal physiology, the mechanisms controlling their establishment are poorly understood. Using the developing Xenopus epidermis and regenerating human upper airways, we reveal the importance of BMP signalling for the construction of vertebrate mucociliary epithelia. In Xenopus, attenuation of BMP activity is necessary for the specification of multiciliated cells (MCCs), ionocytes and small secretory cells (SSCs). Conversely, BMP activity is required for the proper differentiation of goblet cells. Our data suggest that the BMP and Notch pathways interact to control fate choices in the developing epidermis. Unexpectedly, BMP activity is also necessary for the insertion of MCCs, ionocytes and SSCs into the surface epithelium. In human, BMP inhibition also strongly stimulates the formation of MCCs in normal and pathological (cystic fibrosis) airway samples, whereas BMP overactivation has the opposite effect. This work identifies the BMP pathway as a key regulator of vertebrate mucociliary epithelium differentiation and morphogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.118679DOI Listing

Publication Analysis

Top Keywords

vertebrate mucociliary
12
mucociliary epithelia
12
bmp activity
12
bmp
9
bmp signalling
8
construction vertebrate
8
mccs ionocytes
8
signalling controls
4
controls construction
4
mucociliary
4

Similar Publications

Objective: Radiation-induced lung injury (RILI) is a serious side-effect of radiotherapy for lung cancer, in which effects on the normal lung epithelium may play a key role. Since these effects are incompletely understood, the aim of the present study was to evaluate the effect of ionizing radiation (IR) on cultured well-differentiated primary bronchial epithelial cells (PBEC) with a focus on cytotoxicity, barrier formation, inflammation and epithelial progenitor function.

Materials And Methods: PBEC were cultured at the Air-Liquid Interface (ALI-PBEC) to allow mucociliary differentiation.

View Article and Find Full Text PDF

Optimization of a micro-scale air-liquid-interface model of human proximal airway epithelium for moderate throughput drug screening for SARS-CoV-2.

Respir Res

January 2025

Department of Pediatrics, David Geffen School of Medicine, UCLA Children's Discovery and Innovation Institute, Mattel Children's Hospital UCLA, UCLA, Los Angeles, CA, 90095, USA.

Background: Many respiratory viruses attack the airway epithelium and cause a wide spectrum of diseases for which we have limited therapies. To date, a few primary human stem cell-based models of the proximal airway have been reported for drug discovery but scaling them up to a higher throughput platform remains a significant challenge. As a result, most of the drug screening assays for respiratory viruses are performed on commercial cell line-based 2D cultures that provide limited translational ability.

View Article and Find Full Text PDF

The development of a inhaled nanodrug delivery assessment platform is crucial for advancing treatments for chronic lung diseases. Traditional in vitro models and commercial aerosol systems fail to accurately simulate the complex human respiratory patterns and mucosal barriers. To address this, we have developed the breathing mucociliary-on-a-chip (BMC) platform, which replicates mucociliary clearance and respiratory dynamics in vitro.

View Article and Find Full Text PDF

Organ-on-a-chip (OOC) devices mimic human organs, which can be used for many different applications, including drug development, environmental toxicology, disease models, and physiological assessment. Image data acquisition and analysis from these chips are crucial for advancing research in the field. In this study, we propose a label-free morphology imaging platform compatible with the small airway-on-a-chip system.

View Article and Find Full Text PDF

Background: Using primary airway epithelial cells (AEC) is essential to mimic more closely different types and stages of lung disease in humans while reducing or even replacing animal experiments. Access to lung tissue remains limited because these samples are generally obtained from patients who undergo lung transplantation for end-stage lung disease or thoracic surgery for (mostly) lung cancer. We investigated whether forceps or cryo biopsies are a viable alternative source of AEC compared to the conventional technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!