Genetic manipulation of fungi requires quick, low-cost, efficient, high-throughput and molecular tools. In this paper, we report 22 entry constructs as new molecular tools based on the Gateway technology facilitating rapid construction of binary vectors that can be used for functional analysis of genes in fungi. The entry vectors for single, double or triple gene-deletion mutants were developed using hygromycin, geneticin and nourseothricin resistance genes as selection markers. Furthermore, entry vectors containing green fluorescent (GFP) or red fluorescent (RFP) in combination with hygromycin, geneticin or nourseothricin selection markers were generated. The latter vectors provide the possibility of gene deletion and simultaneous labelling of the fungal transformants with GFP or RFP reporter genes. The applicability of a number of entry vectors was validated in Zymoseptoria tritici, an important fungal wheat pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fgb.2015.03.016DOI Listing

Publication Analysis

Top Keywords

entry vectors
12
molecular tools
8
hygromycin geneticin
8
geneticin nourseothricin
8
selection markers
8
vectors
5
flexible gateway
4
gateway constructs
4
constructs functional
4
functional analyses
4

Similar Publications

An engineered adeno-associated virus mediates efficient blood-brain barrier penetration with enhanced neurotropism and reduced hepatotropism.

J Control Release

January 2025

Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 430074 Wuhan, PR China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071 Wuhan, PR China; Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, PR China; University of Chinese Academy of Sciences, 100049 Beijing, PR China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 200031 Shanghai, PR China. Electronic address:

The blood-brain barrier (BBB) is a formidable barrier that restricts the entry of substances into the brain, complicating the study of brain function and the treatment of neurological conditions. Traditional methods of delivering genes from the periphery to the central nervous system (CNS) using adeno-associated viruses (AAVs) often require high doses, which can trigger immune responses and hepatotoxicity. Here, we developed a new AAV variant named AAVhu.

View Article and Find Full Text PDF

Background: The increasing prevalence of type 2 diabetes mellitus (T2DM) in lower and middle - income countries call for preventive public health interventions. Studies from Africa including those from Ghana, consistently reveal high T2DM-related mortality rates. While previous research in the Ho municipality has primarily examined risk factors, comorbidity, and quality of life of T2DM patients, this study specifically investigated mortality predictors among these patients.

View Article and Find Full Text PDF

Objective: to study the anatomical feasibility of laser fiber insertion for interstitial thermal therapy via transorbital approach to the temporo-mesial structures (amygdala-hippocampus-parahippocampus complex).

Methods: Anatomical dissections were performed bilaterally on two human cadaveric heads via a transorbital approach, in which screws and laser fibers were used for magnetic resonance imaging-guided laser interstitial thermal therapy (MRIgLITT) assisted by neuronavigation. In addition, eight transorbital trajectories were simulated using the transorbital entry points obtained from a cadaveric radiological study of four patients previously operated on for mesial temporal lobe epilepsy.

View Article and Find Full Text PDF

The Compound AT13148 Targeting AKT Suppresses Dengue Virus 2 Replication.

Vector Borne Zoonotic Dis

January 2025

Department of Microbiology, School of Preclinical Medicine, Fourth Military Medical University, Xi'an, China.

Dengue virus (DENV) infection, caused by serotypes DENV 1-4, represents a significant global public health challenge, with no antiviral drugs currently available for treatment. The host Protein kinase B (AKT) signaling pathway is crucial for DENV infection, presenting a potential target for antiviral drug development. This study aimed to evaluate the antiviral activity of kinase inhibitors that target the AKT pathway, focusing on the compound AT13148.

View Article and Find Full Text PDF

The Junín virus (JUNV) is one of the New World arenaviruses that cause severe hemorrhagic fever. Human transferrin receptor 1 (hTfR1) has been identified as the main receptor for JUNV for virus entry into host cells. To date, no treatment has been approved for JUNV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!