Spatial and temporal epidemiological analysis in the Big Data era.

Prev Vet Med

Veterinary Epidemiology, Economics & Public Health Group, Department of Production & Population Health, Royal Veterinary College, London, UK.

Published: November 2015

Concurrent with global economic development in the last 50 years, the opportunities for the spread of existing diseases and emergence of new infectious pathogens, have increased substantially. The activities associated with the enormously intensified global connectivity have resulted in large amounts of data being generated, which in turn provides opportunities for generating knowledge that will allow more effective management of animal and human health risks. This so-called Big Data has, more recently, been accompanied by the Internet of Things which highlights the increasing presence of a wide range of sensors, interconnected via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation in data quality and should take advantage of its spatial and temporal dimensions, where available. Apart from the development of hardware technologies and networking/communication infrastructure, it is necessary to develop appropriate data management tools that make this data accessible for analysis. This includes relational databases, geographical information systems and most recently, cloud-based data storage such as Hadoop distributed file systems. While the development in analytical methodologies has not quite caught up with the data deluge, important advances have been made in a number of areas, including spatial and temporal data analysis where the spectrum of analytical methods ranges from visualisation and exploratory analysis, to modelling. While there used to be a primary focus on statistical science in terms of methodological development for data analysis, the newly emerged discipline of data science is a reflection of the challenges presented by the need to integrate diverse data sources and exploit them using novel data- and knowledge-driven modelling methods while simultaneously recognising the value of quantitative as well as qualitative analytical approaches. Machine learning regression methods, which are more robust and can handle large datasets faster than classical regression approaches, are now also used to analyse spatial and spatio-temporal data. Multi-criteria decision analysis methods have gained greater acceptance, due in part, to the need to increasingly combine data from diverse sources including published scientific information and expert opinion in an attempt to fill important knowledge gaps. The opportunities for more effective prevention, detection and control of animal health threats arising from these developments are immense, but not without risks given the different types, and much higher frequency, of biases associated with these data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7114113PMC
http://dx.doi.org/10.1016/j.prevetmed.2015.05.012DOI Listing

Publication Analysis

Top Keywords

data
16
spatial temporal
12
big data
8
data analysis
8
analysis
7
spatial
4
temporal epidemiological
4
epidemiological analysis
4
analysis big
4
data era
4

Similar Publications

Introduction: Wearables are electronic devices worn on the body to collect health data. These devices, like smartwatches and patches, use sensors to gather information on various health parameters. This review highlights current use and the potential benefit of wearable technology in patients with inflammatory bowel disease (IBD).

View Article and Find Full Text PDF

Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.

View Article and Find Full Text PDF

The association between multilingual experience factors and cognitive functioning in older adults: A Lifelines study.

J Gerontol B Psychol Sci Soc Sci

January 2025

Linguistics and English as a Second Language, Faculty of Arts, University of Groningen, Groningen, the Netherlands.

Objectives: The complex life experience of speaking two or more languages has been suggested to preserve cognition in older adulthood. This study aimed to investigate this further by examining the relationship between multilingual experience variables and cognitive functioning in a large cohort of older adults in the diversely multilingual north of the Netherlands.

Method: 11,332 older individuals participating in the Lifelines Cohort Study completed a language experience questionnaire.

View Article and Find Full Text PDF

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!