Combination of fluconazole with silver nanoparticles produced by Fusarium oxysporum improves antifungal effect against planktonic cells and biofilm of drug-resistant Candida albicans.

Med Mycol

Programa de Pós-Graduação em Microbiologia, Universidade Estadual de Londrina, Londrina, PR, Brazil Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil.

Published: May 2016

Silver nanoparticles (AgNPs) have been extensively studied because of their anti-microbial potential. Here, we evaluated the effect of biologically synthesized silver nanoparticles (AgNPbio) alone and in combination with fluconazole (FLC) against planktonic cells and biofilms of FLC-resistant Candida albicans AgNPbio exhibited a fungicidal effect, with a minimal inhibitory concentration (MIC) and fungicidal concentration ranging from 2.17 to 4.35 μg/ml. The combination of AgNPbio and FLC reduced the MIC of FLC around 16 to 64 times against planktonic cells of allC. albicans There was no significant inhibitory effect of AgNPbio on biofilm cells. However, FLC combined with AgNPbio caused a significant dose-dependent decrease in the viability of both initial and mature biofilm. All concentrations of AgNPbio, alone or in combination with FLC, were not cytotoxic to mammalian cells.The results highlight the effectiveness of the combination of AgNPbio with FLC against FLC-resistant C. albicans.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myv036DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
planktonic cells
12
combination fluconazole
8
candida albicans
8
agnpbio combination
8
combination agnpbio
8
agnpbio flc
8
agnpbio
7
flc
6
combination
5

Similar Publications

Introduction And Aims: Dental practices pose a high risk of microbial contamination due to frequent exposure to bodily fluids like saliva and blood. Bioengineering innovations have emerged as vital tools to enhance infection control in dental settings. This review aims to assess the global applications and effectiveness of these innovations, particularly focusing on antimicrobial biomaterials, sterilization techniques, and personal protective equipment (PPE).

View Article and Find Full Text PDF

Resource utilization of waste solar photovoltaic panels for preparation of microporous silicon nanoparticles.

Waste Manag

December 2024

College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.

With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.

View Article and Find Full Text PDF

Overcoming Nanosilver Resistance: Resensitizing Bacteria and Targeting Evolutionary Mechanisms.

ACS Nano

December 2024

School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.

The rapid spread of antimicrobial resistance poses a critical threat to global health and the environment. Antimicrobial nanomaterials, including silver nanoparticles (AgNPs), are being explored as innovative solutions; however, the emergence of nanoresistance challenges their effectiveness. Understanding resistance mechanisms is essential for developing antievolutionary strategies.

View Article and Find Full Text PDF

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Development of a high-performance pseudocapacitive composite via electroless deposition of silver nanoparticles on micro-sized silicon.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.

An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!