Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6.

Chemosphere

School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom. Electronic address:

Published: November 2015

Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for this analysis alternative approaches have been promoted. Category formation and read-across have been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. These categories provide a mechanistic basis for grouping and any further predictive modelling. A computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work presented herein demonstrates how modifications to the implementation of Verhaar between version 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as outside of the domain of the model. Further amendments to the classification rules have been implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer compounds being classified as outside of the model domain, further improving the predictivity of the scheme. The utility of the modification described herein is demonstrated through building quality, mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds within specific mechanistic categories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2015.06.009DOI Listing

Publication Analysis

Top Keywords

verhaar scheme
12
mechanistic categories
8
implementation verhaar
8
compounds
6
investigation verhaar
4
scheme
4
scheme predicting
4
predicting acute
4
acute aquatic
4
aquatic toxicity
4

Similar Publications

The performance of chemical safety assessment within the domain of environmental toxicology is often impeded by a shortfall of appropriate experimental data describing potential hazards across the many compounds in regular industrial use. In silico schemes for assigning aquatic-relevant modes or mechanisms of toxic action to substances, based solely on consideration of chemical structure, have seen widespread employment─including those of Verhaar, Russom, and later Bauer (MechoA). Recently, development of a further system was reported by Sapounidou, which, in common with MechoA, seeks to ground its classifications in understanding and appreciation of molecular initiating events.

View Article and Find Full Text PDF

An array of industrial processing units generates many multimeric hazardous compounds, such as complex technical lignin and its toxic derivatives, thereby persist in expelled water bodies. The inclusion of some group of motifs in the complex technical lignin structure helps it resist degrade biologically, most often even recalcitrant. Relatively small concentrations of lignin are harmful to aquatic organisms and can trigger environmental hazards.

View Article and Find Full Text PDF

Discrimination of active and inactive substances in cytotoxicity based on Tox21 10K compound library: Structure alert and mode of action.

Toxicology

October 2021

Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611, USA.

In vitro cytotoxicity assay is an ideal alternative method for the in vivo toxicity in the risk assessment of pollutants in environment. However, modes of action (MOAs) of cytotoxicity have not been investigated for a wide range of compounds. In this paper, binomial and recursive partitioning analysis were carried out between the cytotoxicity and molecular descriptors for 8981 compounds.

View Article and Find Full Text PDF

MOA-based linear and nonlinear QSAR models for predicting the toxicity of organic chemicals to Vibrio fischeri.

Environ Sci Pollut Res Int

March 2020

State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, People's Republic of China.

Risk assessment of pollutants to humans and ecosystems requires much toxicological data. However, experimental testing of compounds expends a large number of animals and is criticized for ethical reasons. The in silico method is playing an important role in filling the data gap.

View Article and Find Full Text PDF

Multiple mode of action (MOA) frameworks have been developed in aquatic ecotoxicology, mainly based on fish toxicity. These frameworks provide information on a key determinant of chemical toxicity, but the MOA categories and level of specificity remain unique to each of the classification schemes. The present study aimed to develop a consensus MOA assignment within EnviroTox, a curated in vivo aquatic toxicity database, based on the following MOA classification schemes: Verhaar (modified) framework, Assessment Tool for Evaluating Risk, Toxicity Estimation Software Tool, and OASIS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!