Introduction: Surgical performance is affected by distractors and interruptions to surgical workflow that exist in the operating room. However, traditional surgical simulators are used to train surgeons in a skills laboratory that does not recreate these conditions. To overcome this limitation, we have developed a novel, immersive virtual reality (Gen2-VR) system to train surgeons in these environments. This study was to establish face and construct validity of our system.
Methods And Procedures: The study was a within-subjects design, with subjects repeating a virtual peg transfer task under three different conditions: Case I: traditional VR; Case II: Gen2-VR with no distractions and Case III: Gen2-VR with distractions and interruptions. In Case III, to simulate the effects of distractions and interruptions, music was played intermittently, the camera lens was fogged for 10 s and tools malfunctioned for 15 s at random points in time during the simulation. At the completion of the study subjects filled in a 5-point Likert scale feedback questionnaire. A total of sixteen subjects participated in this study.
Results: Friedman test showed significant difference in scores between the three conditions (p < 0.0001). Post hoc analysis using Wilcoxon signed-rank tests with Bonferroni correction further showed that all the three conditions were significantly different from each other (Case I, Case II, p < 0.0001), (Case I, Case III, p < 0.0001) and (Case II, Case III, p = 0.009). Subjects rated that fog (mean 4.18) and tool malfunction (median 4.56) significantly hindered their performance.
Conclusion: The results showed that Gen2-VR simulator has both face and construct validity and that it can accurately and realistically present distractions and interruptions in a simulated OR, in spite of limitations of the current HMD hardware technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685027 | PMC |
http://dx.doi.org/10.1007/s00464-015-4278-7 | DOI Listing |
J Bone Joint Surg Am
November 2024
Department of Orthopaedic Surgery, Cleveland Clinic Foundation, Cleveland, Ohio.
Background: Risk factors for gluteal tears include age-related deterioration, female sex, and increased body mass index. As the literature that supports the sagittal relationship between the lumbar spine and the hip is increasing, there may be a parallel relationship between the perturbations in spinopelvic alignment caused by lumbar spine disease and gluteal muscle tears. Because no prior studies other than single-institution series have reported on this phenomenon, we investigated spine-abductor syndrome at the population level.
View Article and Find Full Text PDFPediatr Cardiol
January 2025
Department of Pediatric Cardiology, Seattle Children's Hospital, Seattle, WA, USA.
Fetal echocardiography (FE) is recommended for parents with congenital heart disease (pCHD) due to a 3-6% recurrence risk of congenital heart disease (CHD). This study aimed to evaluate the cost of FE for detecting neonatal CHD in pCHD. FE data were collected between 12/2015 and 12/2022.
View Article and Find Full Text PDFClin Adv Periodontics
January 2025
Operative Unit of Dentistry, Azienda Unità Sanitaria Locale, Ferrara, Italy.
Background: The purpose of the present case study is to describe the application of a modification of the Biologically-oriented Alveolar Ridge Preservation (BARP) principles in cases of peri-implant bone dehiscence (PIBD) due to a compromised alveolus at immediate implant placement (IIP).
Methods: The technique is based on the stratification of three layers: a deep layer with a collagen sponge (CS) in the apical part of the alveolus (where the buccal bone plate was still present) to support the blood clot; a graft layer to correct the PIBD; and a superficial collagen layer to cover the graft thus providing space and enhancing clot/graft stability. Healing was obtained by primary closure.
Nanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw 01-142, Poland.
Ultrasmall micro-light-emitting diodes (μLEDs), sized below 10 μm, are indispensable to create the next-generation augmented and virtual reality (AR/VR) devices. Their high brightness and low power consumption could not only enhance the user experience by providing vivid and lifelike visuals but also extend device longevity. However, a notable challenge emerges: a decrease in efficiency with a reduced size.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!