Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4500281PMC
http://dx.doi.org/10.1073/pnas.1504232112DOI Listing

Publication Analysis

Top Keywords

hinge domain
12
epigenetic regulation
8
domain smchd1
8
smchd1
7
genome-wide binding
4
binding mechanistic
4
mechanistic analyses
4
analyses smchd1-mediated
4
epigenetic
4
smchd1-mediated epigenetic
4

Similar Publications

Elucidating the structure and function of a membrane-active plant protein domain using in silico mutagenesis.

Biochim Biophys Acta Biomembr

January 2025

Land and Food Systems, University of British Columbia, Vancouver, Canada; Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada. Electronic address:

The Solanum tuberosum (common potato) plant specific insert (StPSI) is an antimicrobial protein domain that exhibits membrane-disrupting and membrane-fusing activity upon dimerization at acidic pH, activity proposed to involve electrostatic attraction and membrane anchoring mediated by specific positively-charged and conserved tryptophan residues, respectively. This study is the first to employ an in silico mutagenesis approach to clarify the structure-function relationship of a plant specific insert (PSI), where ten rationally-mutated StPSI variants were investigated using all-atom and coarse-grained molecular dynamics. The tryptophan (W) residue at position 18 (W18) of wild-type StPSI was predicted to confer structural flexibility to the dimer and mediate a partial separation of the assembled monomers upon bilayer contact, while residues including W77 and the lysine (K) residue at position 83 (K83) were predicted to stabilize secondary structure and influence association with the model membrane.

View Article and Find Full Text PDF

The sensation of mechanical stimuli is initiated by elastic gating springs that pull open mechanosensory transduction channels. Searches for gating springs have focused on force-conveying protein tethers such as the amino-terminal ankyrin tether of the Drosophila mechanosensory transduction channel NOMPC. Here, by combining protein domain duplications with mechanical measurements, electrophysiology, molecular dynamics simulations and modeling, we identify the NOMPC gating-spring as the short linker between the ankyrin tether and the channel gate.

View Article and Find Full Text PDF

TMEM16A, a key calcium-activated chloride channel, is crucial for many physiological and pathological processes such as cancer, hypertension, and osteoporosis, etc. However, the regulatory mechanism of TMEM16A is poorly understood, limiting the discovery of effective modulators. Here, we unveil an allosteric gating mechanism by presenting a high-resolution cryo-EM structure of TMEM16A in complex with a channel inhibitor that we identified, Tamsulosin, which is resolved at 2.

View Article and Find Full Text PDF

Purpose: Photon counting detectors offer promising advancements in computed tomography (CT) imaging by enabling the quantification and three-dimensional imaging of contrast agents and tissue types through simultaneous multi-energy projections from broad X-ray spectra. However, the accuracy of these decomposition methods hinges on precise composite spectral attenuation values that one must reconstruct from spectral micro-CT. Errors in such estimations could be due to effects such as beam hardening, object scatter, or detector sensor-related spectral distortions such as fluorescence.

View Article and Find Full Text PDF

FcγRI plays a crucial role in the effector function of IgG antibodies, interacting with the lower hinge region of IgG1 with nanomolar affinity. Binding occurs specifically in domain 2 (D2) of the FcγRI ectodomain, while domain 3 (D3) is a flexible linker. The D3 domain is positioned away from the IgG binding site on the FcγRI and does not directly contact the Fc region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!