A Historical View and Vision into the Future of the Field of Safety Pharmacology.

Handb Exp Pharmacol

Program Development, Safety Assessment and Laboratory Animal Resources, Merck Research Laboratories, BMB 6-101, 33 Avenue Louis Pasteur, Boston, MA, 02115, USA,

Published: September 2015

Professor Gerhard Zbinden recognized in the 1970s that the standards of the day for testing new candidate drugs in preclinical toxicity studies failed to identify acute pharmacodynamic adverse events that had the potential to harm participants in clinical trials. From his vision emerged the field of safety pharmacology, formally defined in the International Conference on Harmonization (ICH) S7A guidelines as "those studies that investigate the potential undesirable pharmacodynamic effects of a substance on physiological functions in relation to exposure in the therapeutic range and above." Initially, evaluations of small-molecule pharmacodynamic safety utilized efficacy models and were an ancillary responsibility of discovery scientists. However, over time, the relationship of these studies to overall safety was reflected by the regulatory agencies who, in directing the practice of safety pharmacology through guidance documents, prompted transition of responsibility to drug safety departments (e.g., toxicology). Events that have further shaped the field over the past 15 years include the ICH S7B guidance, evolution of molecular technologies leading to identification of new therapeutic targets with uncertain toxicities, introduction of data collection using more sophisticated and refined technologies, and utilization of transgenic animal models probing critical scientific questions regarding novel targets of toxicity. The collapse of the worldwide economy in the latter half of the first decade of the twenty-first century, continuing high rates of compound attrition during clinical development and post-approval and sharply increasing costs of drug development have led to significant strategy changes, contraction of the size of pharmaceutical organizations, and refocusing of therapeutic areas of investigation. With these changes has come movement away from dedicated internal safety pharmacology capability to utilization of capabilities within external contract research organizations. This movement has created the opportunity for the safety pharmacology discipline to come "full circle" and return to the drug discovery arena (target identification through clinical candidate selection) to contribute to the mitigation of the high rate of candidate drug failure through better compound selection decision making. Finally, the changing focus of science and losses in didactic training of scientists in whole animal physiology and pharmacology have revealed a serious gap in the future availability of qualified individuals to apply the principles of safety pharmacology in support of drug discovery and development. This is a significant deficiency that at present is only partially met with academic and professional society programs advancing a minimal level of training. In summary, with the exception that the future availability of suitably trained scientists is a critical need for the field that remains to be effectively addressed, the prospects for the future of safety pharmacology are hopeful and promising, and challenging for those individuals who want to assume this responsibility. What began in the early part of the new millennium as a relatively simple model of testing to assure the safety of Phase I clinical subjects and patients from acute deleterious effects on life-supporting organ systems has grown with experience and time to a science that mobilizes the principles of cellular and molecular biology and attempts to predict acute adverse events and those associated with long-term treatment. These challenges call for scientists with a broad range of in-depth scientific knowledge and an ability to adapt to a dynamic and forever changing industry. Identifying individuals who will serve today and training those who will serve in the future will fall to all of us who are committed to this important field of science.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-662-46943-9_1DOI Listing

Publication Analysis

Top Keywords

safety pharmacology
28
safety
11
field safety
8
pharmacology
8
adverse events
8
drug discovery
8
future availability
8
will serve
8
future
5
field
5

Similar Publications

Safety and immunogenicity of an mRNA-1273 vaccine booster in adolescents.

Hum Vaccin Immunother

December 2025

Research and Development, Infectious Disease, Moderna, Inc., Cambridge, MA, USA.

Safety, immunogenicity, and effectiveness of an mRNA-1273 50-μg booster were evaluated in adolescents (12-17 years), with and without pre-booster SARS-CoV-2 infection. Participants who had received the 2-dose mRNA-1273 100-µg primary series in the TeenCOVE trial (NCT04649151) were offered the mRNA-1273 50-μg booster. Primary objectives included safety and inference of effectiveness by establishing noninferiority of neutralizing antibody (nAb) responses after the booster compared with the nAb post-primary series of mRNA-1273 among young adults in COVE (NCT04470427).

View Article and Find Full Text PDF

Xanthomonas citri pv. malvacearum (Xcm) associated with bacterial blight disease is a significant and widespread pathogen affecting cotton worldwide. The excessive use of harmful chemicals to control plant pathogens has exerted a negative impact on environmental safety.

View Article and Find Full Text PDF

Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed.

View Article and Find Full Text PDF

Purpose: This phase II study is designed to evaluate the combination therapy involving suvemcitug and envafolimab with FOLFIRI in microsatellite-stable or mismatch repair-proficient (MSS/pMMR) colorectal cancer (CRC) in the second-line treatment setting.

Methods: This study is a non-randomized, open-label prospective study comprising multiple cohorts (NCT05148195). Here, we only report the data from the CRC cohort.

View Article and Find Full Text PDF

Cigarette smoking remains an enormous public health problem causing millions of preventable deaths annually worldwide. Although safe and efficient smoking cessation pharmacotherapies such as nicotine replacement products and the medications varenicline and bupropion are available, long-term abstinence rates remain low and new approaches to help smokers successfully quit smoking are needed. In recent years, electronic nicotine delivery systems such as e-cigarettes and heated-tobacco products, and novel smokeless nicotine delivery products like nicotine pouches have gained widespread popularity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!