Cobalt(III) Protoporphyrin Activates the DGCR8 Protein and Can Compensate microRNA Processing Deficiency.

Chem Biol

Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA. Electronic address:

Published: June 2015

Processing of microRNA primary transcripts (pri-miRNAs) is highly regulated and defects in the processing machinery play a key role in many human diseases. In 22q11.2 deletion syndrome (22q11.2DS), heterozygous deletion of DiGeorge critical region gene 8 (DGCR8) causes a processing deficiency, which contributes to abnormal brain development. The DGCR8 protein is the RNA-binding partner of Drosha RNase, both essential for processing canonical pri-miRNAs. To identify an agent that can compensate reduced DGCR8 expression, we screened for metalloporphyrins that can mimic the natural DGCR8 heme cofactor. We found that Co(III) protoporphyrin IX (PPIX) stably binds DGCR8 and activates it for pri-miRNA processing in vitro and in HeLa cells. Importantly, treating cultured Dgcr8(+/-) mouse neurons with Co(III)PPIX can compensate the pri-miRNA processing defects. Co(III)PPIX is effective at concentrations as low as 0.2 μM and is not degraded by heme degradation enzymes, making it useful as a research tool and a potential therapeutic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788496PMC
http://dx.doi.org/10.1016/j.chembiol.2015.05.015DOI Listing

Publication Analysis

Top Keywords

dgcr8 protein
8
processing deficiency
8
pri-mirna processing
8
processing
7
dgcr8
6
cobaltiii protoporphyrin
4
protoporphyrin activates
4
activates dgcr8
4
protein compensate
4
compensate microrna
4

Similar Publications

The biogenesis and regulation of animal microRNAs.

Nat Rev Mol Cell Biol

December 2024

Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.

MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute.

View Article and Find Full Text PDF

MicroRNAs play a significant role in the development of cancers, including lung cancer. A recent study revealed that smoking, a key risk factor for lung cancer, increased the levels of hsa-mir-301a in the tumor tissues of patients with lung squamous cell carcinoma (LUSC). The aim of the current study is to investigate the mechanism by which tobacco smoke increases hsa-mir-301a levels in LUSC tumor tissues using bioinformatics analysis.

View Article and Find Full Text PDF

In recent years, germline mutations in the microRNA (miRNA) processor genes DICER1 and DGCR8 have been coupled to the development of thyroid follicular nodular disease (TFND), thereby casting new light on the etiology of this enigmatic, benign condition in non-iodine-deficient regions. Moreover, DICER1 and DGCR8 mutations have also been reported in rare subsets of follicular cell-derived thyroid carcinomas. Specifically, truncating germline or missense somatic DICER1 mutations have been reported in small subsets of pediatric and adolescent follicular thyroid carcinoma (FTC) and poorly differentiated thyroid carcinoma (PDTC).

View Article and Find Full Text PDF
Article Synopsis
  • * CANVAS, a neurodegenerative disorder, is specifically associated with the expansion of the (AAGGG) repeat in the RFC1 gene, but its exact pathological mechanisms are not fully understood.
  • * Recent findings suggest that GQ structures formed by these repeats may contribute to toxic protein-related mechanisms in CANVAS, as they affect RNA processing and interact with key RNA-binding proteins, ultimately guiding future therapeutic strategies.
View Article and Find Full Text PDF

A functional connection between the Microprocessor and a variant NEXT complex.

Mol Cell

November 2024

Department of Molecular Biology and Genetics, Universitetsbyen 81, Aarhus University, Aarhus, Denmark. Electronic address:

In mammalian cells, primary miRNAs are cleaved at their hairpin structures by the Microprocessor complex, whose core is composed of DROSHA and DGCR8. Here, we show that 5' flanking regions, resulting from Microprocessor cleavage, are targeted by the RNA exosome in mouse embryonic stem cells (mESCs). This is facilitated by a physical link between DGCR8 and the nuclear exosome targeting (NEXT) component ZCCHC8.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!