Identification of a lung cancer cell line deficient in atg7-dependent autophagy.

Autophagy

a Oncology Drug Discovery Unit, Millennium Pharmaceuticals, Inc., a wholly owned subsidiary of Takeda Pharmaceutical Company Limited , Cambridge , Massachusetts , USA.

Published: June 2015

Autophagy is a major cellular process for bulk degradation of proteins and organelles in order to maintain metabolic homeostasis, and it represents an emerging target area for cancer. Initially proposed to be a cancer-restricting process for tumor initiation, recent studies suggest that autophagy can also promote cell survival in established tumors. ATG7 is an essential autophagy gene that encodes the E1 enzyme necessary for the lipidation of the LC3 family of ubiquitin-like proteins and autophagosome formation. In this study we identified a rare case of a cancer cell line, H1650 lung adenocarcinoma, which has lost ATG7 expression due to a focal biallelic deletion within the ATG7 locus. These cells displayed no evidence of ATG7 pathway activity; however, reconstituting the cells with wild-type ATG7 restored both LC3 lipidation and downstream autophagic consumption of autophagy substrates such as the SQSTM1/p62 protein. We characterized several phenotypes reported to be influenced by autophagy, and observed an ATG7-dependent increase in cell growth and clearance of proteasome-inhibitor induced protein aggregates. Cellular changes in mitochondrial metabolism or response to nutrient starvation were unaffected by ATG7 expression. In addition, parental H1650 cells that lacked ATG7 were still able to consume autophagy substrates SQSTM1, NBR1 and TAX1BP1 via a bafilomycin A-sensitive pathway, suggesting that these proteins were not exclusively degraded by autophagy. Overall, these findings highlight a unique outlier instance of complete loss of ATG7-dependent autophagy in a cancer cell line. The H1650 cell line may be a useful system for future studies to further understand the role of autophagy in tumorigenesis and potential redundant pathways that allow cells to circumvent the loss of ATG7-dependent autophagy in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2015.1056966DOI Listing

Publication Analysis

Top Keywords

cancer cell
12
atg7-dependent autophagy
12
autophagy
11
cell h1650
8
atg7 expression
8
autophagy substrates
8
loss atg7-dependent
8
autophagy cancer
8
atg7
7
cell
6

Similar Publications

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

Background: Drug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment.

View Article and Find Full Text PDF

SPP1+ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β.

J Exp Clin Cancer Res

December 2024

Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: Head and neck squamous cell carcinoma (HNSCC) is a very aggressive disease characterized by a heterogeneous tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs) constitute the major innate immune population in the TIME where they facilitate crucial regulatory processes that participate in malignant tumor progression. SPP1 + macrophages (SPP1 + Macs) are found in many cancers, but their effects on HNSCC remain unknown.

View Article and Find Full Text PDF

Immunophenotypic analysis on circulating T cells for early diagnosis of lung cancer.

Biomark Res

December 2024

Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, 58128, Republic of Korea.

The immune system continuously interacts with tumors, possibly leading to systemic alterations in circulating immune cells. However, the potential of these cancer-associated changes for diagnostic purposes remains poorly explored. To investigate this, we conducted a comprehensive flow cytometric analysis of 452 peripheral blood mononuclear cell (PBMC) samples from 206 non-small-cell lung cancer (NSCLC) patients, 100 small-cell lung cancer (SCLC) patients, 94 healthy individuals, and 52 benign lung disease (BLD) patients.

View Article and Find Full Text PDF

PTGES3 proteolysis using the liposomal peptide-PROTAC approach.

Biol Direct

December 2024

Center of Hepatobiliary Pancreatic Disease, Xuzhou Central Hospital, Xuzhou, Jiangsu, 221009, China.

Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide, and the lack of effective biomarkers for early detection leads to poor therapeutic outcomes. Prostaglandin E Synthase 3 (PTGES3) is a putative prognostic marker in many solid tumors; however, its expression and biological functions in HCC have not been determined. The proteolysis-targeting chimera (PROTAC) is an established technology for targeted protein degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!