Crystal structure of bis-(prop-2-yn-1-yl) 5-nitro-isophthalate.

Acta Crystallogr E Crystallogr Commun

PG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India.

Published: June 2015

The whole mol-ecule of the title compound, C14H9NO6, is generated by twofold rotation symmetry; the twofold axis bis-ects the nitro group and the benzene ring. The nitro group is inclined to the benzene ring by 14.42 (9)°. The prop-2-yn-1-yl groups are inclined to the benzene ring by 13 (2)° and to each other by 24 (3)°; one directed above the plane of the benzene ring and the other below. In the crystal, mol-ecules are linked via pairs of C-H⋯O hydrogen bonds, forming inversion dimers with an R 2 (2)(18) ring motif. The dimers are linked by further C-H⋯O hydrogen bonds, forming sheets lying parallel to (100).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4459362PMC
http://dx.doi.org/10.1107/S2056989015009846DOI Listing

Publication Analysis

Top Keywords

benzene ring
16
nitro group
8
inclined benzene
8
c-h⋯o hydrogen
8
hydrogen bonds
8
bonds forming
8
ring
5
crystal structure
4
structure bis-prop-2-yn-1-yl
4
bis-prop-2-yn-1-yl 5-nitro-isophthalate
4

Similar Publications

Unraveling the mechanisms underlying the fluorescent probe detection of microcystin-LR and its binding with CT-DNA.

Int J Biol Macromol

January 2025

Donghu Experimental Station of Lake Ecosystems, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China; Southwest United Graduate School, Kunming 650092, PR China. Electronic address:

Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection.

View Article and Find Full Text PDF

Integration of Motion and Stillness: A Paradigm Shift in Constructing Nearly Planar NIR-II AIEgen with Ultrahigh Molar Absorptivity and Photothermal Effect for Multimodal Phototheranostics.

J Am Chem Soc

January 2025

Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, and Department of Chemical & Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.

The two contradictory entities in nature often follow the principle of unity of opposites, leading to optimal overall performance. Particularly, aggregation-induced emission luminogens (AIEgens) with donor-acceptor (D-A) structures exhibit tunable optical properties and versatile functionalities, offering significant potential to revolutionize cancer treatment. However, trapped by low molar absorptivity (ε) owing to the distorted configurations, the ceilings of their photon-harvesting capability and the corresponding phototheranostic performance still fall short.

View Article and Find Full Text PDF

Prediction of Potential Risk for Ten Azole and Benzimidazole Fungicides with the Aryl Hydrocarbon Receptor Agonistic Activity to Aquatic Ecosystems.

J Agric Food Chem

January 2025

Fujian Engineering Research Center for Green Pest Management/Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests/East China Branch of the National Center for Agricultural Biosafety Sciences, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.

Azole and benzimidazole fungicides are widely used agrochemicals to prevent and treat fungal growth and are frequently detected in aquatic environments. Here, we aimed to assess the aquatic ecological risks of ten currently used azole and benzimidazole fungicides, which with the aryl hydrocarbon receptor (AhR) agonistic activity, and their transformation products (TPs). We obtained over 400 types of aerobic TPs for ten fungicides.

View Article and Find Full Text PDF

Molecular structure characteristic of coals of different rank.

J Mol Model

January 2025

School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Haidian District, Ding No.11 Xueyuan Road, Beijing, 100083, People's Republic of China.

Context: Understanding the structural characteristics of coal at the molecular level is fundamental for its effective utilization. To explore the molecular structure characteristic, the long-flame coal from Daliuta (DLT), coking coal from Yaoqiao (YQ), and anthracite from Taixi (TX) were investigated using various techniques such as elemental analysis, Fourier transform infrared spectroscopy, solid-state C nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy. Based on the structural parameters, the coal molecular model was constructed and optimized.

View Article and Find Full Text PDF

Optically pure monosubstituted [n]paracyclophanes are promising candidates for material synthesis, asymmetric catalysis, and drug discovery. Thus far, only a few catalytic asymmetric synthesis processes have been reported for assessing these stained atropisomers. In this study, we describe a highly enantioselective synthesis of monosubstituted [n]paracyclophanes by combining desymmetrization and kinetic resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!