Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This letter demonstrates a p-type raised source-and-drain (raised S/D) junctionless thin-film transistors (JL-TFTs) with a dual-gate structure. The raised S/D structure provides a high saturation current (>1 μA/μm). The subthreshold swing (SS) is 100 mV/decade and the drain-induced barrier lowering (DIBL) is 0.8 mV/V, and the I on/I off current ratio is over 10(8) A/A for L g = 1 μm. Using a thin channel structure obtains excellent performance in the raised S/D structure. Besides the basic electrical characteristics, the dual-gate structure can also be used to adjust V th in multi-V th circuit designs. This study examines the feasibility of using JL-TFTs in future three-dimensional (3D) layer-to-layer stacked high-density device applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493839 | PMC |
http://dx.doi.org/10.1186/1556-276X-9-669 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!