Discovery of novel, non-acidic mPGES-1 inhibitors by virtual screening with a multistep protocol.

Bioorg Med Chem

Computer Aided Molecular Design (CAMD) Group, Institute of Pharmacy/Pharmaceutical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria. Electronic address:

Published: August 2015

Microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibitors are considered as potential therapeutic agents for the treatment of inflammatory pain and certain types of cancer. So far, several series of acidic as well as non-acidic inhibitors of mPGES-1 have been discovered. Acidic inhibitors, however, may have issues, such as loss of potency in human whole blood and in vivo, stressing the importance of the design and identification of novel, non-acidic chemical scaffolds of mPGES-1 inhibitors. Using a multistep virtual screening protocol, the Vitas-M compound library (∼1.3 million entries) was filtered and 16 predicted compounds were experimentally evaluated in a biological assay in vitro. This approach yielded two molecules active in the low micromolar range (IC50 values: 4.5 and 3.8 μM, respectively).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528062PMC
http://dx.doi.org/10.1016/j.bmc.2015.05.045DOI Listing

Publication Analysis

Top Keywords

mpges-1 inhibitors
12
novel non-acidic
8
virtual screening
8
inhibitors
5
discovery novel
4
mpges-1
4
non-acidic mpges-1
4
inhibitors virtual
4
screening multistep
4
multistep protocol
4

Similar Publications

Inhibiting microsomal prostaglandin E synthase-1 (mPGES-1), an inducible enzyme involved in prostaglandin E (PGE) biosynthesis and tumor microenvironment (TME) homeostasis, is a valuable strategy for treating inflammation and cancer. In this work, 5-methylcarboxamidepyrrole-based molecules were designed and synthesized as new compounds targeting mPGES-1. Remarkably, compounds 1f, 2b, 2c, and 2d were able to significantly reduce the activity of the isolated enzyme, showing IC values in the low micromolar range.

View Article and Find Full Text PDF
Article Synopsis
  • mPGES-1 is highlighted as a key target for developing treatments for inflammation and pain, with the study introducing new benzimidazole compounds that effectively inhibit this enzyme.
  • One of the compounds, AGU654, showed exceptional selectivity for mPGES-1 over other related enzymes, with a low inhibition concentration (IC = 2.9 nM) and promising bioavailability.
  • AGU654 was able to reduce PGE production from activated immune cells without affecting other prostaglandins, and it also demonstrated success in alleviating fever and pain in guinea pig models, indicating its potential for managing inflammatory diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Novel benzophenone-thiazole hybrids were created and tested for their ability to reduce inflammation in a lab setting using human blood.
  • The hybrids displayed impressive inhibition of prostaglandin E2 (PGE2) release, with some showing effectiveness comparable to existing reference drugs.
  • Molecular docking studies suggest these hybrids can bind effectively to key enzymes involved in inflammation, indicating their potential as new anti-inflammatory drug candidates and emphasizing the importance of choosing the right chemical substituents.
View Article and Find Full Text PDF
Article Synopsis
  • Tumor cell-derived prostaglandin E2 (PGE2) promotes immunosuppression in the tumor microenvironment by influencing immune cells, but its specific role in tumor cells remains unexplored.
  • Deleting the PGE2 synthesis enzyme or blocking its receptor (EP4) in pancreatic cancer cells activates T cells, changes the immune environment, and inhibits tumor growth.
  • Combining EP4 receptor blockade with immunotherapy leads to complete tumor regressions and enhances immune memory, highlighting the importance of targeting the PGE2 signaling pathway for potential cancer treatments.
View Article and Find Full Text PDF

A comprehensive understanding of the tumour immune microenvironment (TIME) is essential for advancing precision medicine and identifying potential therapeutic targets. This study focused on canine urothelial carcinoma (cUC) recognised for its high sensitivity to cyclooxygenase (COX) inhibitors. Using immunohistochemical techniques, we quantified the infiltration of seven immune cell populations within cUC tumour tissue to identify clinicopathological features that characterise the TIME in cUC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!