Stereochemical Outcomes in Reductive Cyclizations To Form Spirocyclic Heterocycles.

Org Lett

Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II Irvine, California 92697, United States.

Published: July 2015

Reductive lithiation and cyclization of N-Boc α-amino nitriles are often highly stereoselective. The alkyllithium intermediates are formed with varying levels of selectivity, but the alkyllithium geometry does not play a major role in the overall stereoselectivity. The final configuration is determined in the cyclization reaction, where both retention and inversion pathways are observed. Where strong thermodynamic preferences exist in the products, the kinetically controlled alkyllithium cyclization favors the more stable product.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5b01422DOI Listing

Publication Analysis

Top Keywords

stereochemical outcomes
4
outcomes reductive
4
reductive cyclizations
4
cyclizations form
4
form spirocyclic
4
spirocyclic heterocycles
4
heterocycles reductive
4
reductive lithiation
4
lithiation cyclization
4
cyclization n-boc
4

Similar Publications

Hydroalkylation of terminal alkynes is a powerful approach to the synthesis of disubstituted alkenes. However, its application is largely unexplored in the synthesis of α,β-unsaturated carbonyls, which are common among synthetic intermediates and biologically active molecules. The thermodynamically less stable -isomers of activated alkenes have been particularly challenging to access because of their propensity for isomerization and the paucity of reliable -selective hydroalkylation methods.

View Article and Find Full Text PDF

We present a comprehensive account of our efforts directed towards the synthesis of sacubitril, a neprilysin inhibitor used in combination with valsartan and marketed as Entresto™. Our initial approach to the formal synthesis of sacubitril employed a chiral pool strategy, utilizing (S)-pyroglutamic acid as a key building block and Cu(I)-mediated Csp2-Csp3 cross-coupling as a key transformation. Further investigations led to the development of chiral amine transfer (CAT) reagents-based stereoselective synthesis.

View Article and Find Full Text PDF

We report a stereo-differentiating dynamic kinetic asymmetric Rh(I)-catalyzed Pauson-Khand reaction, which provides access to an array of thapsigargin stereoisomers. Using catalyst-control, a consistent stereochemical outcome is achieved at C2─for both matched and mismatched cases─regardless of the allene-yne C8 stereochemistry. The stereochemical configuration for all stereoisomers was assigned by comparing experimental vibrational circular dichroism (VCD) and C NMR to DFT-computed spectra.

View Article and Find Full Text PDF

Mechanism of C-3 Acyl Neighboring Group Participation in Mannuronic Acid Glycosyl Donors.

J Am Chem Soc

January 2025

Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands.

One of the main challenges in oligosaccharide synthesis is the stereoselective introduction of the glycosidic bond. In order to understand and control glycosylation reactions, thorough mechanistic studies are required. Reaction intermediates found by NMR spectroscopy often cannot explain the glycosylation's stereochemical outcome.

View Article and Find Full Text PDF

In vitro relative cytotoxicity (IC ()/IC () of ()-3-(4'-methylbenzylidene)-4-chromanone () towards human Molt 4/C8 and CEM T-lymphocytes showed a >50-fold increase in comparison to those of the respective tetralone derivative (). On the other hand, such an increase was not observed in the analogous 4-OCH ( and ) derivatives. In order to study whether thiol reactivity-as a possible basis of the mechanism of action-correlates with the observed cytotoxicities, the kinetics of the non-enzyme catalyzed reactions with reduced glutathione (GSH) and N-acetylcysteine (NAC) of and were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!