Epilepsy is one of the most common neurological disorders and patients suffer from unprovoked seizures. In contrast, psychogenic nonepileptic seizures (PNES) are another class of seizures that are involuntary events not caused by abnormal electrical discharges but are a manifestation of psychological distress. The similarity of these two types of seizures poses diagnostic challenges that often leads in delayed diagnosis of PNES. Further, the diagnosis of PNES involves high-cost hospital admission and monitoring using video-electroencephalogram machines. A wearable device that can monitor the patient in natural setting is a desired solution for diagnosis of convulsive PNES. A wearable device with an accelerometer sensor is proposed as a new solution in the detection and diagnosis of PNES. The seizure detection algorithm and PNES classification algorithm are developed. The developed algorithms are tested on data collected from convulsive epileptic patients. A very high seizure detection rate is achieved with 100% sensitivity and few false alarms. A leave-one-out error of 6.67% is achieved in PNES classification, demonstrating the usefulness of wearable device in the diagnosis of PNES.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2015.2446539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!