The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2015.2440473 | DOI Listing |
J Phys Chem A
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
We present pyVPT2, a program to perform second-order vibrational perturbation theory (VPT2) computations to obtain anharmonic vibrational frequencies. This program is written in Python and can utilize any of the several quantum chemistry programs that have been interfaced to the QCEngine project of the Molecular Sciences Software Institute (MolSSI). The requisite single point energy, gradient, or Hessian computations can be automatically performed in a distributed-parallel fashion by optionally using the MolSSI's QCFractal software.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Physics, Yantai University, Yantai 264005, China.
Vibronic coupling and multiple electronic states effect play a pivotal role in the molecular spectroscopy of large systems. Herein, we present a detailed theoretical study on the absorption (ABS) and electronic circular dichroism (ECD) spectra of three [7]helicene derivatives in chloroform, with a particular emphasis on the significance of vibronic coupling and the multiple electronic states effect in spectral simulations. The vertical gradient (VG) and vertical Hessian (VH) models, incorporating the Franck-Condon (FC) effect and Herzberg-Teller (HT) contribution, are considered in the vibronic calculations.
View Article and Find Full Text PDFJ Chem Phys
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
Vibro-polaritons are hybrid light-matter states that arise from the strong coupling between the molecular vibrational transitions and the photons in an optical cavity. Developing theoretical and computational methods to describe and predict the unique properties of vibro-polaritons is of great significance for guiding the design of new materials and experiments. Here, we present the ab initio cavity Born-Oppenheimer density functional theory (CBO-DFT) and formulate the analytic energy gradient and Hessian as well as the nuclear and photonic derivatives of dipole and polarizability within the framework of CBO-DFT to efficiently calculate the harmonic vibrational frequencies, infrared absorption, and Raman scattering spectra of vibro-polaritons as well as to explore the critical points on the cavity potential energy surface.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Mechatronics, Aliko Dangote University of Science and Technology, Kano, Nigeria.
Having accurate and effective wind energy forecasting that can be easily incorporated into smart networks is important. Appropriate planning and energy generation predictions are necessary for these infrastructures. The production of wind energy is linked to instability and unpredictability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!