A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cascaded Collaborative Regression for Robust Facial Landmark Detection Trained Using a Mixture of Synthetic and Real Images With Dynamic Weighting. | LitMetric

A large amount of training data is usually crucial for successful supervised learning. However, the task of providing training samples is often time-consuming, involving a considerable amount of tedious manual work. In addition, the amount of training data available is often limited. As an alternative, in this paper, we discuss how best to augment the available data for the application of automatic facial landmark detection. We propose the use of a 3D morphable face model to generate synthesized faces for a regression-based detector training. Benefiting from the large synthetic training data, the learned detector is shown to exhibit a better capability to detect the landmarks of a face with pose variations. Furthermore, the synthesized training data set provides accurate and consistent landmarks automatically as compared to the landmarks annotated manually, especially for occluded facial parts. The synthetic data and real data are from different domains; hence the detector trained using only synthesized faces does not generalize well to real faces. To deal with this problem, we propose a cascaded collaborative regression algorithm, which generates a cascaded shape updater that has the ability to overcome the difficulties caused by pose variations, as well as achieving better accuracy when applied to real faces. The training is based on a mix of synthetic and real image data with the mixing controlled by a dynamic mixture weighting schedule. Initially, the training uses heavily the synthetic data, as this can model the gross variations between the various poses. As the training proceeds, progressively more of the natural images are incorporated, as these can model finer detail. To improve the performance of the proposed algorithm further, we designed a dynamic multi-scale local feature extraction method, which captures more informative local features for detector training. An extensive evaluation on both controlled and uncontrolled face data sets demonstrates the merit of the proposed algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2446944DOI Listing

Publication Analysis

Top Keywords

training data
16
training
10
data
10
cascaded collaborative
8
collaborative regression
8
facial landmark
8
landmark detection
8
synthetic real
8
amount training
8
synthesized faces
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!