Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems.

J Phys Chem B

Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.

Published: July 2015

Previous work has shown that lipid nanoparticles (LNP) composed of an ionizable cationic lipid, a poly(ethylene glycol) (PEG) lipid, distearoylphosphatidylcholine (DSPC), cholesterol, and small interfering RNA (siRNA) can be efficiently manufactured employing microfluidic mixing techniques. Cryo-transmission electron microscopy (cryo-TEM) and molecular simulation studies indicate that these LNP systems exhibit a nanostructured core with periodic aqueous compartments containing siRNA. Here we examine first how the lipid composition influences the structural properties of LNP-siRNA systems produced by microfluidic mixing and, second, whether the microfluidic mixing technique can be extended to macromolecules larger than siRNA. It is shown that LNP-siRNA systems can exhibit progressively more bilayer structure as the proportion of bilayer DSPC lipid is increased, suggesting that the core of LNP-siRNA systems can exhibit a continuum of nanostructures depending on the proportions and structural preferences of component lipids. Second, it is shown that the microfluidic mixing technique can also be extended to encapsulation of much larger negatively charged polymers such mRNA (1.7 kb) or plasmid DNA (6 kb). Finally, as a demonstration of the generality of the microfluidic mixing encapsulation process, it is also demonstrated that negatively charged gold nanoparticles (5 nm diameter) can also be efficiently encapsulated in LNP containing cationic lipids. Interestingly, the nanostructure of these gold-containing LNP reveals a "currant bun" morphology as visualized by cryo-TEM. This structure is fully consistent with LNP-siRNA structure predicted by molecular modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b02891DOI Listing

Publication Analysis

Top Keywords

microfluidic mixing
24
systems exhibit
12
lnp-sirna systems
12
second microfluidic
8
mixing technique
8
technique extended
8
negatively charged
8
microfluidic
6
lipid
6
systems
5

Similar Publications

A Droplet Microfluidic Sensor for Point-of-Care Measurement of Plasma/Serum Total Free Thiol Concentrations.

Anal Chem

January 2025

Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

Total free thiols are an important marker of the whole-body redox state, which has been shown to be associated with clinical outcome in health and disease. Recent investigations have suggested that increased insight may be gained by monitoring alterations of redox state in response to exercise and hypoxia and to monitor redox trajectories in disease settings. However, conducting such studies is challenging due to the requirement for repeated venous blood sampling and intensive lab work.

View Article and Find Full Text PDF

An Integrating Microfluidic System for Concentration Gradient Generation of Exosomes and Exosome-Assisted Single-Cell-Derived Tumor-Sphere Formation.

ACS Sens

January 2025

School of Basic Medical Science, Xi'an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi'an Medical University, Xi'an 710021, China.

To enhance exploration on tumor stem-like cells (TSCs) without altering their cellular biological characteristics, researchers advocate for application of single-cell-derived tumor-spheres (STSs). TSCs are regulated by their surrounding microenvironment, making it crucial to simulate a tumor microenvironment to facilitate STS formation. Recently, exosomes that originated from the tumor microenvironment have emerged as a promising approach for mimicking the tumor microenvironment.

View Article and Find Full Text PDF

Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.

View Article and Find Full Text PDF

: In the quest for sustainable and biocompatible materials, silk fibroin (SF), derived from natural silk, has emerged as a promising candidate for nanoparticle production. This study aimed to fabricate silk fibroin particles (SFPs) using a novel swirl mixer previously presented by our group, evaluating their characteristics and suitability for drug delivery applications, including magnetic nanoparticles and dual-drug encapsulation with curcumin (CUR) and 5-fluorouracil (5-FU). : SFPs were fabricated via microfluidics-assisted desolvation using a swirl mixer, ensuring precise mixing kinetics.

View Article and Find Full Text PDF

Continuous Production of Docetaxel-Loaded Nanostructured Lipid Carriers Using a Coaxial Turbulent Jet Mixer with Heating System.

Molecules

January 2025

Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si 31538, Chungcheongnam-do, Republic of Korea.

The continuous synthesis of nanoparticles (NPs) has been actively studied due to its great potential to produce NPs with reproducible and controllable physicochemical properties. Here, we achieved the high throughput production of nanostructured lipid carriers (NLCs) using a coaxial turbulent jet mixer with an added heating system. This device, designed for the crossflow of precursor solution and non-solvent, combined with the heating system, efficiently dissolves solid lipids and surfactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!