Nitrogen-functionalized carbon nanofibers (N-CNFs) were prepared by carbonizing polypyrrole (PPy)-coated cellulose NFs, which were obtained by electrospinning, deacetylation of electrospun cellulose acetate NFs, and PPy polymerization. Supercapacitor electrodes prepared from N-CNFs and a mixture of N-CNFs and Ni(OH)2 showed specific capacitances of ∼236 and ∼1045 F g(-1), respectively. An asymmetric supercapacitor was further fabricated using N-CNFs/Ni(OH)2 and N-CNFs as positive and negative electrodes. The supercapacitor device had a working voltage of 1.6 V in aqueous KOH solution (6.0 M) with an energy density as high as ∼51 (W h) kg(-1) and a maximum power density of ∼117 kW kg(-1). The device had excellent cycle lifetime, which retained ∼84% specific capacitance after 5000 cycles of cyclic voltammetry scans. N-CNFs derived from electrospun cellulose may be useful as an electrode material for development of high-performance supercapacitors and other energy storage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b03757 | DOI Listing |
Dalton Trans
January 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.
A binder-free and freestanding electrode was designed by uniformly immobilizing carbon quantum dot (CQD)-anchored polyaniline (PANI) heterostructures onto electrospun carbon nanofibers (CNFs) a facile hierarchical assembly process. The fabricated freestanding CNF/PANI/CQD electrode exhibits a unique three-dimensional (3D) network nanostructure, which accelerates ion migration between the interior and surface of the electrode, thereby enhancing its charging and discharging performance. Moreover, the functional groups on the surface of CQDs could anchor PANI through possible chemical bonding, which not only improves the stability of the PANI/CQD heterojunction but also creates an additional conductive channel for the PANI polymer.
View Article and Find Full Text PDFRSC Adv
January 2025
Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Materials Science and Engineering, Harbin University of Science and Technology Harbin 150080 P. R. China
[This corrects the article DOI: 10.1039/C9RA10485B.].
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
The power conversion efficiency (PCE) of an organic solar cell (OSC) mainly depends on the chemical structures and intrinsic properties of its active layer materials. The development of new nonfullerene acceptors (NFAs) has significantly boosted the PCEs of OSCs over the last decade. Herein, two carbon-oxygen-bridged fused nonacyclic donor units were developed to synthesize two NFAs, namely TTPIC-Ar and iTTPIC-Ar, respectively.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Desalination Technology Institute, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.
Biomass, as a source of lignocellulose, can be valorized into carbon micro/nanofibers for adsorbing greenhouse gas (GHGs) emissions, especially CO. This article is derived from systematic evidence evaluation of published studies, presenting new, innovative, and systemic approaches to lignocellulose-based carbon micro/nanofiber studies. The review covers a general overview of carbon micro/nanofiber studies, mapping chronicles of the studies, carbon micro/nanofiber types for CO uptake, carbon micro/nanofibers fabrication and characterization, obtained carbonaceous material activation and performances, regulatory frameworks, and sustainability.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:
Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!