Triacylglycerol hydrolases (EC 3.1.1.3) are thought to become activated when they encounter the water-lipid interface causing a "lid" region to move and expose the catalytic site. Here, we tested this idea by looking for lid movements in Thermomyces lanuginosus lipase (TL lipase), and in variants with a mutated lid region of esterase (Esterase) and esterase/lipase (Hybrid) character. To measure lid movements, we employed the tryptophan-induced quenching (TrIQ) fluorescence method to measure how effectively a Trp residue on the lid of these mutants (at position 87 or 89) could quench a fluorescent probe (bimane) placed at nearby site 255 on the protein. To test if lid movement is induced when the enzyme detects a lower-polarity environment (such as at the water-lipid interface), we performed these studies in solvents with different dielectric constants (ε). The results show that lid movement is highly dependent on the particular lid residue composition and solvent polarity. The data suggest that in aqueous solution (ε = 80), the Esterase lid is in an "open" conformation, whereas for the TL lipase and Hybrid, the lid remains "closed". At lower solvent polarities (ε < 46), the lid region for all of the mutants is more "open". Interestingly, these behaviors mirror the structural changes thought to take place upon activation of the enzyme at the water-lipid interface. Together, these results support the idea that lipases are more active in low-polarity solvents because the lid adopts an "open" conformation and indicate that relatively small conformational changes in the lid region play a key role in the activation mechanism of these enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.5b00328DOI Listing

Publication Analysis

Top Keywords

water-lipid interface
12
lid
12
lid region
12
conformational changes
8
lid movements
8
lid movement
8
"open" conformation
8
enzymatic activity
4
activity lipases
4
lipases correlates
4

Similar Publications

Steroids are organic compounds found in all forms of biological life. Besides their structural roles in cell membranes, steroids act as signalling molecules in various physiological processes and are used to treat inflammatory conditions. It has been hypothesised that in addition to their well-characterised genomic and non-genomic pathways, steroids exert their biological or pharmacological activities an indirect, nonreceptor-mediated membrane mechanism caused by steroid-induced changes to the physicochemical properties of cell membranes.

View Article and Find Full Text PDF

A Coarse-Grained Molecular Dynamics Perspective on the Release of 5-Fluorouracil from Liposomes.

Mol Pharm

December 2024

Department of Bioinformatics, TRANSCEND Research Center, Regional Institute of Oncology, 2-4 General Henri Mathias Berthelot, Street, Iaşi 700483, Romania.

Liposomes, small bilayer phospholipid-containing vesicles, are frequently used to ensure slow drug release for a prolonged and improved therapeutic effect. Nevertheless, current findings on the membrane affinity and permeability of the anticancer agent 5-fluorouracil (5-FU) are confounding, which leads to a lack of a clear understanding of how lipid composition impacts the distribution of 5-FU within liposomal structures and its delivery. In the current work, we report a comprehensive coarse-grained molecular dynamics (CGMD) investigation on the influence of cholesterol (CHOL) and the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) on the partitioning of 5-FU in 1,2-dipalmitoyl--glycero-3-phosphocholine (DPPC) double-bilayer systems, as well as its in vitro release from liposomes with identical lipid compositions.

View Article and Find Full Text PDF

One of the mechanisms accounting for the toxicity of amyloid peptides in diseases like Alzheimer's and Parkinson's is the formation of pores on the plasma membrane of neurons. Here, we perform unbiased all-atom simulations of the full membrane damaging pathway, which includes adsorption, aggregation, and perforation of the lipid bilayer accounting for pore-like structures. Simulations are performed using four peptides made with the same amino acids.

View Article and Find Full Text PDF

Bilirubin (BR), a product of heme catabolism, plays a critical role in biological systems. Although increased levels of BR result in hyperbilirubinemia or jaundice, there is increasing evidence that lower concentrations substantially decrease the risk of oxidative stress-mediated diseases due to antioxidant functions of BR. We studied the radical-trapping ability of BR in two model systems, micellar and liposomal, at a broad pH range.

View Article and Find Full Text PDF

Two-dimensional NOE (nuclear Overhauser effect) NMR spectroscopy was employed to investigate the dynamic properties of water within lyotropic bicontinuous lipidic cubic phases (LCPs) formed by monoolein (MO). Experiments observed categorically different effective residence times of water molecules: (i) in proximity to the glycerol moiety of MO, and (ii) adjacent to the hydrophobic chain towards the hydrocarbon tail of MO, as evidenced by the opposite signs of intermolecular NOE cross peaks between protons of water and those of MO in 2D H-H NOESY spectra. Spectroscopic data delineating the different effective residence times of water molecules within both the gyroid (Q) and diamond (Q) phase groups corresponding to hydration levels of 35 and 40 wt%, respectively, are presented.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!