The "Best Catalyst" for Water Oxidation Depends on the Oxidation Method Employed: A Case Study of Manganese Oxides.

J Am Chem Soc

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States.

Published: July 2015

Manganese oxides are a highly promising class of water-oxidation catalysts (WOCs), but the optimal MnOx formulation or polymorph is not clear from previous reports in the literature. A complication not limited to MnOx-based WOCs is that such catalysts are routinely evaluated by different methods, ranging from the use of a chemical oxidant such as Ce(4+), photoactive mediators such as [Ru(bpy)3](2+), or electrochemical techniques. Here, we report a systematic study of nine crystalline MnOx materials as WOCs and show that the identity of the "best" catalyst changes, depending on the oxidation method used to probe the catalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5b05093DOI Listing

Publication Analysis

Top Keywords

oxidation method
8
manganese oxides
8
"best catalyst"
4
catalyst" water
4
water oxidation
4
oxidation depends
4
depends oxidation
4
method employed
4
employed case
4
case study
4

Similar Publications

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

The oxidation of 5-HMF to HMFCA is an important yet complex process, as it generates high-value chemical intermediates. Achieving this transformation efficiently requires the development of non-precious, highly active catalysts derived from renewable biomass sources. In this work, we introduce UoM-1 (UoM, University of Mazandaran), a novel cobalt-based metal-organic framework (Co-MOF) synthesized using a simple one-step ultrasonic irradiation method.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!