A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modular Synthesis of Highly Substituted Pyridines via Enolate α-Alkenylation. | LitMetric

Modular Synthesis of Highly Substituted Pyridines via Enolate α-Alkenylation.

Org Lett

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K.

Published: July 2015

A novel methodology for the synthesis of highly substituted pyridines based on the palladium-catalyzed enolate α-alkenylation of ketones is presented; the formation of aromatic compounds is a new direction for this catalytic C-C bond forming reaction. In the key step, a protected β-haloalkenylaldehyde participates in α-alkenylation with a ketone to afford a 1,5-dicarbonyl surrogate, which then undergoes cyclization/double elimination to the corresponding pyridine product, all in one pot. The β-haloalkenylaldehyde starting materials can be obtained from the corresponding methylene ketone via Vilsmeier haloformylation. Using this concise route, a variety of highly substituted pyridines were synthesized in three steps from commercially available compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5b01312DOI Listing

Publication Analysis

Top Keywords

highly substituted
12
substituted pyridines
12
synthesis highly
8
enolate α-alkenylation
8
modular synthesis
4
pyridines enolate
4
α-alkenylation novel
4
novel methodology
4
methodology synthesis
4
pyridines based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!