A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo. Biodistribution studies in rats bearing intracerebral RG2 glioma resulted in selective tumor uptake of 3 with an intratumoral concentration that was approximately 4 times higher than that of 2. The obtained results significantly advance the understanding of the binding interactions between TK1 and carboranyl pyrimidine nucleoside analogs and will profoundly impact future design strategies for these agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4501388 | PMC |
http://dx.doi.org/10.1016/j.ejmech.2015.05.042 | DOI Listing |
Appl Radiat Isot
December 2015
Massachusetts General Hospital, Department of Radiation Oncology, Boston, MA 02114, USA.
In this report we describe studies with N5-2OH, a carboranyl thymidine analog (CTA), which is a substrate for thymidine kinase 1 (TK1), using the F98 rat glioma model. In vivo BNCT studies have demonstrated that intracerebral (i.c.
View Article and Find Full Text PDFEur J Med Chem
July 2015
Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH, USA. Electronic address:
A library of sixteen 2nd generation amino- and amido-substituted carboranyl pyrimidine nucleoside analogs, designed as substrates and inhibitors of thymidine kinase 1 (TK1) for potential use in boron neutron capture therapy (BNCT) of cancer, was synthesized and evaluated in enzyme kinetic-, enzyme inhibition-, metabolomic-, and biodistribution studies. One of these 2nd generation carboranyl pyrimidine nucleoside analogs (YB18A [3]), having an amino group directly attached to a meta-carborane cage tethered via ethylene spacer to the 3-position of thymidine, was approximately 3-4 times superior as a substrate and inhibitor of hTK1 than N5-2OH (2), a 1st generation carboranyl pyrimidine nucleoside analog. Both 2 and 3 appeared to be 5'-monophosphorylated in TK1(+) RG2 cells, both in vitro and in vivo.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2013
Department of Anatomy, Physiology, and Biochemistry, The Swedish University of Agricultural Sciences, Biomedical Center, Uppsala, Sweden (E.S., S.E.); Department of Oncology, University of Alberta, Edmonton, Alberta, Canada (V.L.D., D.M., M.B.S., C.E.C); Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio (R.T., H.K.A., A.K., S.H., A.G., W.T.); Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt (A.K.); Division of Pharmaceutical Organic Chemistry, College of Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt (S.H.); Division of Pharmacology, College of Veterinary Medicine, Cairo University, Giza, Egypt (A.G.); and Department of Pathology, The Ohio State University, Columbus, Ohio (R.J.N., R.F.B.).
3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 ((10)B) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level.
View Article and Find Full Text PDFFuture Med Chem
April 2013
Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, Columbus, OH 43210, USA.
The compound class of 3-carboranyl thymidine analogues (3CTAs) are boron delivery agents for boron neutron capture therapy (BNCT), a binary treatment modality for cancer. Presumably, these compounds accumulate selectively in tumor cells via intracellular trapping, which is mediated by hTK1. Favorable in vivo biodistribution profiles of 3CTAs led to promising results in preclinical BNCT of rats with intracerebral brain tumors.
View Article and Find Full Text PDFEur J Med Chem
February 2013
Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
Four different libraries of overall twenty three N3-substituted thymidine (dThd) analogues, including eleven 3-carboranyl thymidine analogues (3CTAs), were synthesized. The latter are potential agents for Boron Neutron Capture Therapy (BNCT) of cancer. Linker between the dThd scaffold and the m-carborane cluster at the N3-position of the 3CTAs contained amidinyl-(3e and 3f), guanidyl-(7e-7g), tetrazolylmethyl-(9b1/2-9d1/2), or tetrazolyl groups (11b1/2-11d1/2) to improve human thymidine kinase 1 (hTK1) substrate characteristics and water solubilities compared with 1st generation 3CTAs, such as N5 and N5-2OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!