Objective: Sepsis remains a predominant cause of mortality in the ICU, yet strategies to increase survival have proved largely unsuccessful. This study aimed to identify proteins linked to sepsis outcomes using a glycoproteomic approach to target extracellular proteins that trigger downstream pathways and direct patient outcomes.

Design: Plasma was obtained from the Lactate Assessment in the Treatment of Early Sepsis cohort. N-linked plasma glycopeptides were quantified by solid-phase extraction coupled with mass spectrometry. Glycopeptides were assigned to proteins using RefSeq (National Center of Biotechnology Information, Bethesda, MD) and visualized in a heat map. Protein differences were validated by immunoblotting, and proteins were mapped for biological processes using Database for Annotation, Visualization and Integrated Discovery (National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, MD) and for functional pathways using Kyoto Encyclopedia of Genes and Genomes (Kanehisa Laboratories, Kyoto, Japan) databases.

Setting: Hospitalized care.

Patients: Patients admitted to the emergency department were enrolled in the study when the diagnosis of sepsis was made, within 6 hours of presentation.

Interventions: None.

Measurements And Main Results: A total of 501 glycopeptides corresponding to 234 proteins were identified. Of these, 66 glycopeptides were unique to the survivor group and corresponded to 54 proteins, 60 were unique to the nonsurvivor group and corresponded to 43 proteins, and 375 were common responses between groups and corresponded to 137 proteins. Immunoblotting showed that nonsurvivors had increased total kininogen; decreased total cathepsin-L1, vascular cell adhesion molecule, periostin, and neutrophil gelatinase-associated lipocalin; and a two-fold decrease in glycosylated clusterin (all p < 0.05). Kyoto Encyclopedia of Genes and Genomes analysis identified six enriched pathways. Interestingly, survivors relied on the extrinsic pathway of the complement and coagulation cascade, whereas nonsurvivors relied on the intrinsic pathway.

Conclusion: This study identifies proteins linked to patient outcomes and provides insight into unexplored mechanisms that can be investigated for the identification of novel therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4573827PMC
http://dx.doi.org/10.1097/CCM.0000000000001134DOI Listing

Publication Analysis

Top Keywords

proteins
10
sepsis outcomes
8
proteins linked
8
kyoto encyclopedia
8
encyclopedia genes
8
genes genomes
8
group corresponded
8
corresponded proteins
8
sepsis
5
plasma glycoproteomics
4

Similar Publications

Objective: Therapeutic interventions for epithelial ovarian cancer (EOC) have increased greatly over the last decade but improvements outside of biomarker selected therapies have been limited. There remains a pressing need for more effective treatment options that can prolong survival and enhance the quality of life of patients with EOC. In contrast to the significant benefits of immunotherapy with immune checkpoint inhibitors (CPI) seen in many solid tumors, initial experience in EOC suggests limited efficacy of CPIs monotherapy.

View Article and Find Full Text PDF

DDX50 cooperates with STAU1 to effect stabilization of pro-differentiation RNAs.

Cell Rep

January 2025

Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA; Program in Cancer Biology, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA. Electronic address:

Glucose binding can alter protein oligomerization to enable differentiation. Here, we demonstrate that glucose binding is a general capacity of DExD/H-box RNA helicases, including DDX50, which was found to be essential for the differentiation of diverse cell types. Glucose binding to conserved DDX50 ATP binding sequences altered protein conformation and dissociated DDX50 dimers.

View Article and Find Full Text PDF

Protocol for evaluating the activity of R2 retrotransposons in mammalian cells.

STAR Protoc

January 2025

Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Bejing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China. Electronic address:

R2 retrotransposons can be harnessed to insert genes at targeted sites by all-RNA delivery, presenting a new technology for next-generation biotherapeutics. Here, we report a protocol for evaluating the gene integration activity of R2 retrotransposons in mammalian cells. We describe the construction of vectors separately expressing R2 protein and donor, the process of liposome transfection, and flow cytometry.

View Article and Find Full Text PDF

Clinical Features: Sickle cell patients may develop a multitude of antibodies and experience life-threatening events with transfusion such as hyperhemolysis syndrome or delayed hemolytic transfusion reaction. Further transfusion may not be possible in such cases.

Therapeutic Challenge: When conventional blood products are not available for transfusion yet the patient requires additional oxygen-carrying support, artificial oxygen carriers may be required.

View Article and Find Full Text PDF

Anaemia is a common phenomenon in patients with malignant gynecological tumors. The occurrence of anaemia in the perioperative period leads to an increased probability of blood transfusion, increased surgical complications,poor wound healing, prolonged hospitalization, increased medical costs, and increased mortality. Intravenous iron, which is known for its rapid onset and lack of gastrointestinal side effects, has become increasingly prevalent in clinical practice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!