Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The butterfly-like tetranuclear cobalt cluster based 3D MOF [Me2NH2][Co2(bptc)(μ3-OH)(H2O)2] (1) underwent a reversible thermally triggered single-crystal-to-single-crystal transformation via Co-Owater weakened intermediate 1a to produce a partly dehydrated phase [Me2NH2][Co2(bptc)(μ3-OH)(H2O)] (2), which was confirmed by single-crystal X-ray diffraction, powder X-ray diffraction, thermogravimetric analysis, and IR spectroscopy. During the dehydration course, the local coordination environment of one Co(2+) ion was changed from the saturated octahedron to a coordinately unsaturated square-pyramid, accompanied by a crystal color change from red to purple. Compared with pristine hydrated 1, dehydrated 2 exhibits highly efficient and recyclable catalytic activity for cyanosilylation of carbonyl compounds with a low catalyst loading of 0.1 mol% Co at room temperature under solvent-free conditions, which due to the open Co(2+) sites as catalytically activated sites played a significant role in the heterogeneous catalytic process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt01456e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!