A Novel Trypanosoma cruzi Protein Associated to the Flagellar Pocket of Replicative Stages and Involved in Parasite Growth.

PLoS One

Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires, Argentina.

Published: April 2016

The flagellar pocket constitutes an active and strategic site in the body of trypanosomatids (i.e. parasitic protozoa that cause important human and/or livestock diseases), which participates in several important processes such as cell polarity, morphogenesis and replication. Most importantly, the flagellar pocket is the unique site of surface protein export and nutrient uptake in trypanosomatids, and thus constitutes a key portal for the interaction with the host. In this work, we identified and characterized a novel Trypanosoma cruzi protein, termed TCLP 1, that accumulates at the flagellar pocket area of parasite replicative forms, as revealed by biochemical, immuno-cytochemistry and electron microscopy techniques. Different in silico analyses revealed that TCLP 1 is the founding member of a family of chimeric molecules restricted to trypanosomatids bearing, in addition to eukaryotic ubiquitin-like and protein-protein interacting domains, a motif displaying significant structural homology to bacterial multi-cargo chaperones involved in the secretion of virulence factors. Using the fidelity of an homologous expression system we confirmed TCLP 1 sub-cellular distribution and showed that TCLP 1-over-expressing parasites display impaired survival and accelerated progression to late stationary phase under starvation conditions. The reduced endocytic capacity of TCLP 1-over-expressors likely underlies (at least in part) this growth phenotype. TCLP 1 is involved in the uptake of extracellular macromolecules required for nutrition and hence in T. cruzi growth. Due to the bacterial origin, sub-cellular distribution and putative function(s), we propose TCLP 1 and related orthologs in trypanosomatids as appealing therapeutic targets for intervention against these health-threatening parasites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472858PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130099PLOS

Publication Analysis

Top Keywords

flagellar pocket
16
novel trypanosoma
8
trypanosoma cruzi
8
cruzi protein
8
sub-cellular distribution
8
tclp
7
protein associated
4
flagellar
4
associated flagellar
4
pocket
4

Similar Publications

Biogenesis of EVs in Trypanosomatids.

Curr Top Membr

October 2024

Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil. Electronic address:

Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment.

View Article and Find Full Text PDF

Doublet microtubules (DMTs) are flagellar components required for the protist () to swim through the human genitourinary tract to cause trichomoniasis, the most common non-viral sexually transmitted disease. Lack of DMT structures has prevented structure-guided drug design to manage infection. Here, we determined the cryo-EM structure of native DMTs, identifying 29 unique proteins, including 18 microtubule inner proteins and 9 microtubule outer proteins.

View Article and Find Full Text PDF

Quantitative assessment of the nanoanatomy of the contractile vacuole complex in .

Life Sci Alliance

October 2024

Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho and Centro Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

uses various mechanisms to cope with osmotic fluctuations during infection, including the remodeling of organelles such as the contractile vacuole complex (CVC). Little is known about the morphological changes of the CVC during pulsation cycles occurring upon osmotic stress. Here, we investigated the structure-function relationship between the CVC and the flagellar pocket domain where fluid discharge takes place-the adhesion plaque-during the CVC pulsation cycle.

View Article and Find Full Text PDF

Doublet microtubules (DMTs) are flagellar components required for the protist ( ) to swim through the human genitourinary tract to cause trichomoniasis, the most common non-viral sexually transmitted disease. Lack of DMT structures has prevented structure-guided drug design to manage infection. Here, we determined the cryo-EM structure of native DMTs, identifying 29 unique proteins, including 18 microtubule inner proteins and 9 microtubule outer proteins.

View Article and Find Full Text PDF

Buparvaquone Induces Ultrastructural and Physiological Alterations Leading to Mitochondrial Dysfunction and Caspase-Independent Apoptotic Cell Death in Leishmania donovani.

Microsc Microanal

July 2024

Electron Microscopy Unit, Sophisticated Analytical Instrument Facility and Research, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh 226031, India.

Leishmaniasis is a neglected tropical disease (endemic in 99 countries) caused by parasitic protozoa of the genus Leishmania. As treatment options are limited, there is an unmet need for new drugs. The hydroxynaphthoquinone class of compounds demonstrates broad-spectrum activity against protozoan parasites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!