Chromium oxide (Cr2 O3 ) nanoparticles (NPs) are being increasingly used as a catalyst for aromatic compound manufacture, abrading agents and as pigments (e.g., Viridian). Owing to increased applications, it is important to study the biological effects of Cr2 O3 NPs on human health. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and apoptotic effect of Cr2 O3 NPs in human lung epithelial cells (A549). The study also elucidated the molecular mechanism of its toxicity. Cr2 O3 NPs led to DNA damage, which was deduced by comet assay and cytokinesis block micronucleus assay. The damage could be mediated by the increased levels of reactive oxygen species. Further, the oxygen species led to a decrease in mitochondrial membrane potential and an increase in the ratio of BAX/Bcl-2 leading to mitochondria-mediated apoptosis induced by Cr2 O3 NPs, which ultimately leads to cell death. Hence, there is a need of regulations to be imposed in NP usage. The study provided insight into the caspase-dependent mechanistic pathway of apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.3174 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!