Mobile Charge-Induced Fluorescence Intermittency in Methylammonium Lead Bromide Perovskite.

Nano Lett

†Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia.

Published: July 2015

Organic-inorganic halide perovskite has emerged as a very promising material for solar cells due to its excellent photovoltaic enabling properties resulting in rapid increase in device efficiency over the last 3 years. Extensive knowledge and in-depth physical understanding in the excited state carrier dynamics are urgently required. Here we investigate the fluorescence intermittency (also known as blinking) in vapor-assisted fabricated CH3NH3PbBr3 perovskite. The evident fluorescence blinking is observed in a dense CH3NH3PbBr3 perovskite film that is composed of nanoparticles in close contact with each other. In the case of an isolated nanoparticle no fluorescence blinking is observed. The "ON" probability of fluorescence is dependent on the excitation intensity and exhibits a similar power rule to semiconductor quantum dots at higher excitation intensity. As the vapor-assisted fabricated CH3NH3PbBr3 perovskite film is a cluster of nanoparticles forming a dense film, it facilitates mobile charge migration between the nanoparticles and charge accumulation at the surface or at the boundary of the nanoparticles. This leads to enhanced Auger-like nonradiative recombination contributing to the fluorescence intermittency observed. This finding provides unique insight into the charge accumulation and migration and thus is of crucial importance for device design and improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b01405DOI Listing

Publication Analysis

Top Keywords

fluorescence intermittency
12
ch3nh3pbbr3 perovskite
12
vapor-assisted fabricated
8
fabricated ch3nh3pbbr3
8
fluorescence blinking
8
blinking observed
8
perovskite film
8
excitation intensity
8
charge accumulation
8
fluorescence
6

Similar Publications

Background: Chronic active Epstein-Barr virus (CAEBV) infection is a rare disease in which the Epstein-Barr virus (EBV) persists and replicates, causing chronic symptoms and fatal complications. The treatment of CAEBV is still evolving. Our case report showed a new therapy for CAEBV.

View Article and Find Full Text PDF

A perfusion-independent high-throughput method to isolate liver sinusoidal endothelial cells.

Commun Biol

January 2025

AngioRhythms in Health and Disease, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

Liver sinusoidal endothelial cells (LSECs) critically regulate homeostatic liver function and liver pathogenesis. However, the isolation of LSECs remains a major technological bottleneck in studying molecular mechanisms governing LSEC functions. Current techniques to isolate LSECs, relying on perfusion-dependent liver digestion, are cumbersome with limited throughput.

View Article and Find Full Text PDF

In this work, we present a quantitative comparison of the cell division dynamics between populations of intact and regenerating root tips in the plant model system To achieve the required temporal resolution and to sustain it for the duration of the regeneration process, we adopted a live imaging system based on light-sheet fluorescence microscopy, previously developed in the laboratory. We offer a straightforward quantitative analysis of the temporal and spatial patterns of cell division events showing a statistically significant difference in the frequency of mitotic events and spatial separation of mitotic event clusters between intact and regenerating roots.

View Article and Find Full Text PDF

The quantum yield (QY) of semiconductor quantum dots (QDs) is severely hampered by the inherent fluorescence intermittency. The QY of QDs typically increases with an increase in the excitation wavelength. Here, we present a distinctive behavior, where the QY is found to decrease with an increase in the excitation wavelength in water-soluble CdTe QDs (CQDs).

View Article and Find Full Text PDF

Hyalinizing clear cell carcinoma (HCCC) is a rare, low-grade epithelial tumor predominantly found in the salivary glands, with tracheal involvement being particularly uncommon. The present study details a case of primary tracheal HCCC and its clinical presentation, diagnostic challenges and the therapeutic approach used. A 34-year-old female patient presented with a 1-month history of intermittent dyspnea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!