Background: Prostate cancer (PCa) is a very heterogeneous disease with respect to clinical outcome. This study explored differential DNA methylation in a priori selected genes to diagnose PCa and predict clinical failure (CF) in high-risk patients.

Methods: A quantitative multiplex, methylation-specific PCR assay was developed to assess promoter methylation of the APC, CCND2, GSTP1, PTGS2 and RARB genes in formalin-fixed, paraffin-embedded tissue samples from 42 patients with benign prostatic hyperplasia and radical prostatectomy specimens of patients with high-risk PCa, encompassing training and validation cohorts of 147 and 71 patients, respectively. Log-rank tests, univariate and multivariate Cox models were used to investigate the prognostic value of the DNA methylation.

Results: Hypermethylation of APC, CCND2, GSTP1, PTGS2 and RARB was highly cancer-specific. However, only GSTP1 methylation was significantly associated with CF in both independent high-risk PCa cohorts. Importantly, trichotomization into low, moderate and high GSTP1 methylation level subgroups was highly predictive for CF. Patients with either a low or high GSTP1 methylation level, as compared to the moderate methylation groups, were at a higher risk for CF in both the training (Hazard ratio [HR], 3.65; 95% CI, 1.65 to 8.07) and validation sets (HR, 4.27; 95% CI, 1.03 to 17.72) as well as in the combined cohort (HR, 2.74; 95% CI, 1.42 to 5.27) in multivariate analysis.

Conclusions: Classification of primary high-risk tumors into three subtypes based on DNA methylation can be combined with clinico-pathological parameters for a more informative risk-stratification of these PCa patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4472347PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130651PLOS

Publication Analysis

Top Keywords

gstp1 methylation
12
clinical failure
8
failure high-risk
8
prostate cancer
8
dna methylation
8
apc ccnd2
8
ccnd2 gstp1
8
gstp1 ptgs2
8
ptgs2 rarb
8
high-risk pca
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!