AI Article Synopsis

  • Electrophoretic and dielectrophoretic methods provide advanced separation capabilities for bioparticles, illustrating their importance in diagnostics.
  • Recent experiments have successfully distinguished between gentamicin resistant and susceptible strains of Staphylococcus epidermidis, showcasing a novel application in healthcare.
  • The modified gradient insulator-based dielectrophoresis (g-iDEP) system leverages differences in electrophysical properties to achieve this separation, indicating potential improvements in diagnostic accuracy and antibiotic management.

Article Abstract

Electrophoretic and dielectrophoretic approaches to separations can provide unique capabilities. In the past, capillary and microchip-based approaches to electrophoresis have demonstrated extremely high-resolution separations. More recently, dielectrophoretic systems have shown excellent results for the separation of bioparticles. Here we demonstrate resolution of a difficult pair of targets: gentamicin resistant and susceptible strains of Staphylococcus epidermidis. This separation has significant potential implications for healthcare. This establishes a foundation for biophysical separations as a direct diagnostic tool, potentially improving nearly every figure of merit for diagnostics and antibiotic stewardship. The separations are performed on a modified gradient insulator-based dielectrophoresis (g-iDEP) system and demonstrate that the presence of antibiotic resistance enzymes (or secondary effects) produces a sufficient degree of electrophysical difference to allow separation. The differentiating factor is the ratio of electrophoretic to dielectrophoretic mobilities. This factor is 4.6 ± 0.6 × 10(9) V m(-2) for the resistant strain, versus 9.2 ± 0.4 × 10(9) V m(-2) for the susceptible strain. Using g-iDEP separation, this difference produces clear and easily discerned differentiation of the two strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4541286PMC
http://dx.doi.org/10.1039/c5an00906eDOI Listing

Publication Analysis

Top Keywords

staphylococcus epidermidis
8
antibiotic resistance
8
electrophoretic dielectrophoretic
8
109 m-2
8
biophysical separation
4
separation staphylococcus
4
epidermidis strains
4
strains based
4
based antibiotic
4
resistance electrophoretic
4

Similar Publications

Whole genome sequencing (WGS) and clinical review were used to characterize 14 cases of central line-associated bloodstream infection (CLABSI) due to . WGS, which demonstrated disparate strains, suggested that 42.9% of CLABSI cases were due to contamination, while clinical review suggested that 57.

View Article and Find Full Text PDF

Comparison of taurolidine with 4% ethylenediaminetetraacetic acid on antimicrobial lock effectiveness: An experimental study.

JPEN J Parenter Enteral Nutr

January 2025

3rd Department of Internal Medicine-Metabolic Care and Gerontology, University Hospital and Medical Faculty in Hradec Kralove, Charles University in Prague, Hradec Kralove, Czech Republic.

Background: Antimicrobial lock therapy is recommended for preventing and treating catheter-related bloodstream infections, but different solutions have uncertain efficacy.

Methods: Two locks, 1.35% taurolidine and 4% ethylenediaminetetraacetic acid (EDTA), were tested on Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S.

View Article and Find Full Text PDF

Timely and effective rescue of critically ill children no longer solely relies on advanced medical technology; vascular access plays a pivotal role. Best practice recommendations for nursing in vascular access are critical for ICU patients. However, clear guidelines for the maintenance of external infusion connection devices remain lacking.

View Article and Find Full Text PDF

Antimicrobial Activity of UV-Activated and Cysteamine-Grafted Polymer Foils Against Bacteria and Algae.

Polymers (Basel)

January 2025

Centre for Nanomaterials and Biotechnology, Faculty of Science, University of Jan Evangelista Purkyně, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic.

Surface modification of various polymer foils was achieved by UV activation and chemical grafting with cysteamine to improve surface properties and antimicrobial efficacy. UVC activation at 254 nm led to changes in surface wettability and charge density, which allowed the introduction of amino and thiol functional groups by cysteamine grafting. X-ray photoelectron spectroscopy (XPS) confirmed increased nitrogen and sulfur content on the modified surfaces.

View Article and Find Full Text PDF

Periprosthetic joint infections occur in 1-2% of all patients undergoing prosthetic joint surgeries. Although strong efforts have been made to reduce infection rates, conventional therapies like one- or two-stage revisions have failed to lower the infection rates. Cold atmospheric plasma (CAP) has shown promising results in reducing bacterial loads on surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!