Recent advances in mobile and wireless technologies have made real-time assessments of health behaviors and their influences possible with minimal respondent burden. These tech-enabled real-time assessments provide the basis for intensively adaptive interventions (IAIs). Evidence of such studies that adjust interventions based on real-time inputs is beginning to emerge. Although IAIs are promising, the development of intensively adaptive algorithms generate new research questions, and the intensive longitudinal data produced by IAIs require new methodologies and analytic approaches. Research considerations and future directions for IAIs in health behavior research are provided.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465113 | PMC |
http://dx.doi.org/10.1016/j.copsyc.2015.03.024 | DOI Listing |
Physiol Rep
January 2025
Sport Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.
Both resistance training (RT) and long-duration, high-intensity stretching induce muscular adaptations; however, it is unknown whether the modalities are complementary or redundant, particularly in well-trained individuals. A case-study was conducted on a competitive bodybuilder implementing long-duration, high-intensity stretching of the plantar flexors (60 min 6x/week for 12 weeks) in conjunction with their habitual RT. Ultrasound muscle architecture (muscle thickness [MT], fascicle length [FL], and pennation angle [PA]) measurements were collected at multiple sites at four weekly baseline sessions, six (mid) and 12 (post1) weeks following the commencement of the intervention, and a week after the intervention (post2) while isometric strength and range of motion (RoM) were obtained once at baseline, mid, post1, and post2.
View Article and Find Full Text PDFBMJ Mil Health
January 2025
School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
Introduction: Infantry is a physically demanding trade that is associated with elevated rates of musculoskeletal injury. A 17-week longitudinal intervention assessed the effect of a progressive increase in load carriage mass and sprint-intensity intervals on physical performance, physical complaints, medical encounters, physical activity and sleep in infantry trainees.
Methods: 91 infantry trainees from 2 separate platoons, randomly assigned as control (CON) or experimental (EXP), provided written voluntary consent.
J Environ Manage
January 2025
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:
Fish migration patterns are driven by hydrodynamic factors, which are essential in aquatic ecology. This study investigated the hydrodynamic drivers of Gymnocypris przewalskii fish migration in two distinct river reaches-a straight reach (SR) and a confluence reach (CR)- in the area of Qinghai Lake, China, using a 3D numerical model, fish density field data, and four predictive models. Thirteen hydrodynamic factors, with a focus on water depth and velocity, were analyzed to identify their influence on fish migration.
View Article and Find Full Text PDFTissue Cell
January 2025
Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia. Electronic address:
The extracellular matrix (ECM) and its primary chemical components, including collagen, play a pivotal role in carcinogenesis and tumor progression. The ECM actively regulates cell proliferation, migration, and, importantly, resistance to various adverse factors. It is widely recognized as a key factor in modifying the resistance of tumor cells to various treatment modalities and cytotoxic compounds.
View Article and Find Full Text PDFUltramicroscopy
January 2025
Nanopatterning-Nanoanalysis-Photonic Materials Group, Department of Physics, Paderborn University, Warburgerstr. 100, Paderborn, 33098, Germany. Electronic address:
Electron energy-loss spectroscopy (EELS) performed in a scanning transmission electron microscope (STEM) is susceptible to noise, just like every other measurement. EELS measurements are also affected by signal blurring, related to the energy distribution of the electron beam and the detector point spread function (PSF). Moreover, the signal blurring caused by the detector introduces correlation effects, which smooth the noise.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!