Synaptic neurotransmission is modified at cortical connections throughout life. Varying the amplitude of the postsynaptic response is one mechanism that generates flexible signaling in neural circuits. The timing of the synaptic response may also play a role. Here, we investigated whether weakening and loss of an entire connection between excitatory cortical neurons was foreshadowed in the timing of the postsynaptic response. We made electrophysiological recordings in rat primary somatosensory cortex that was undergoing experience-dependent loss of complete local excitatory connections. The synaptic latency of pyramid-pyramid connections, which typically comprise multiple synapses, was longer and more variable. Connection strength and latency were not correlated. Instead, prolonged latency was more closely related to progression of connection loss. The action potential waveform and axonal conduction velocity were unaffected, suggesting that the altered timing of neurotransmission was attributable to a synaptic mechanism. Modeling studies indicated that increasing the latency and jitter at a subset of synapses reduced the number of action potentials fired by a postsynaptic neuron. We propose that prolonged synaptic latency and diminished temporal precision of neurotransmission are hallmarks of impending loss of a cortical connection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469734PMC
http://dx.doi.org/10.1523/JNEUROSCI.4583-14.2015DOI Listing

Publication Analysis

Top Keywords

postsynaptic response
8
synaptic latency
8
synaptic
5
latency
5
delayed temporally
4
temporally imprecise
4
neurotransmission
4
imprecise neurotransmission
4
neurotransmission reorganizing
4
cortical
4

Similar Publications

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.

View Article and Find Full Text PDF

Introduction: Sleep deprivation (SD), stemming from a myriad of aetiologies, is a prevalent health condition frequently overlooked. It typically impairs memory consolidation and synaptic plasticity, potentially through neuroinflammatory mechanisms and adenosinergic signalling. It is still unclear whether the adenosine A1 receptor (A1R) modulates SD-induced neurological deficits in the hippocampus.

View Article and Find Full Text PDF

Downregulation of the NPY-Y1R system in Grpr neurons results in mechanical and chemical hyperknesis in chronic itch.

Neurobiol Dis

January 2025

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, PR China. Electronic address:

Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord.

View Article and Find Full Text PDF

Synaptic protein expression in bipolar disorder patient-derived neurons implicates PSD-95 as a marker of lithium response.

Neuropharmacology

January 2025

Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA. Electronic address:

Bipolar disorder (BD) is a severe mental illness characterized by recurrent episodes of depression and mania. Lithium is the gold standard pharmacotherapy for BD, but outcomes are variable, and the relevant therapeutic mechanisms underlying successful treatment response remain uncertain. To identify synaptic markers of BD and lithium response, we measured the effects of lithium on induced pluripotent stem cell-derived neurons from BD patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!