A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Radiation Dose Reduction in Computed Tomography-Guided Lung Interventions using an Iterative Reconstruction Technique. | LitMetric

AI Article Synopsis

  • The study aimed to compare standard-dose CT (SDCT) and low-dose CT (LDCT) protocols in terms of radiation doses and image quality for lung interventions.
  • Results showed that LDCT achieved a significant 68.6% reduction in radiation dose while maintaining acceptable diagnostic quality, with no major differences in complication rates between the two groups.
  • Iterative reconstruction methods in the LDCT group offered better image quality than traditional filtered back projection, making LDCT a safer and more effective option for these procedures.

Article Abstract

Purpose: To compare the radiation doses and image qualities of computed tomography (CT)-guided interventions using a standard-dose CT (SDCT) protocol with filtered back projection and a low-dose CT (LDCT) protocol with both filtered back projection and iterative reconstruction.

Materials And Methods: Image quality and radiation doses (dose-length product and CT dose index) were retrospectively reviewed for 130 patients who underwent CT-guided lung interventions. SDCT at 120 kVp and automatic mA modulation and LDCT at 100 kVp and a fixed exposure were each performed for 65 patients. Image quality was objectively evaluated as the contrast-to-noise ratio and subjectively by two radiologists for noise impression, sharpness, artifacts and diagnostic acceptability on a four-point scale.

Results: The groups did not significantly differ in terms of diagnostic acceptability and complication rate. LDCT yielded a median 68.6% reduction in the radiation dose relative to SDCT. In the LDCT group, iterative reconstruction was superior to filtered back projection in terms of noise reduction and subjective image quality. The groups did not differ in terms of beam hardening artifacts.

Conclusion: LDCT was feasible for all procedures and yielded a more than two-thirds reduction in radiation exposure while maintaining overall diagnostic acceptability, safety and precision. The iterative reconstruction algorithm is preferable according to the objective and subjective image quality analyses.

Key Points: Implementation of a low-dose computed tomography (LDCT) protocol for lung interventions is feasible and safe. LDCT protocols yield a significant reduction (more than 2/3) in radiation exposure. Iterative reconstruction algorithms considerably improve the image quality in LDCT protocols.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0035-1553125DOI Listing

Publication Analysis

Top Keywords

image quality
20
iterative reconstruction
16
lung interventions
12
filtered projection
12
diagnostic acceptability
12
radiation dose
8
radiation doses
8
computed tomography
8
protocol filtered
8
ldct
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!